A Uniformly Selected, All-Sky Optical AGN Catalog

Ingyin Zaw (New York University Abu Dhabi) Supermassive Black Holes Environment & Evolution Corfu, June 19, 2019 Yanping Chen (NYUAD), Glennys Farrar (NYU)

Zaw, Chen, & Farrar, 2019, ApJ, 872, 134 Chen, Zaw, & Farrar, 2018, ApJ, 861, 67

AGN Catalog

- Construct an all-sky catalog based on optical spectra
 - Compare with all-sky catalogs at other wavelengths
 - Provide new (near-by) AGN to target in studies
- Ideally: Pure, Complete, Homogeneous
- Challenges
 - Dependence on subtraction of host galaxy contribution
 - Heterogeneous data: differences in spectral quality and resolution

- Near-complete census of the near-by (z <~ 0.09) universe outside the Galactic Plane
- Collected ~ 80% of the spectra, ~75% in 4 spectral subsamples

Spectral Subsamples

Zaw, Chen, & Farrar, 2019

Optical AGN Identification

Zaw, Chen, & Farrar, 2019

- Pros: Well defined and reliable
- Cons: Can miss obscured and low luminosity AGN, sensitivity to host galaxy subtraction

Broad-line (Type 1) AGN

Zaw, Chen, & Farrar, 2019

Narrow-line (Type 2) AGN

Dobos et al. (2012)

Host Galaxy Subtraction

01133672-1034459

Zaw, Chen, & Farrar, 2019

- Fitted Galaxy Contribution: Linear combination of single stellar population (SSP) templates
- Data/Error: Spectral signal-to-noise

Stellar Population Models

- MILES: 3500-7500Å, 63Myr-18Gyr, Z=0.0001-0.03, purely empirical library
- MIUSCAT: 3500-9469Å, extended MILES models, purely empirical stellar libraries
- Maraston05: 0.3-2.5µm, 3Myr-15Gyr, Z=0.0001-0.04, mixed libraries
- Maraston11: 1000-25000Å, various metallicity depends on input stellar library, empirical libraries
 - PEGASE-HR: 4000-6800Å, higher resolution of PEGASE, purely empirical library
- BC03: 91Å-160µm, 0.1Myr-20Gyr,Z=0.0001-0.05, mixed stellar library (empirical + theoretical)
- FSPS (Conroy09,10): 91Å-160µm, 3Myr-15Gyr, Z=0.0001-0.03, mixed stellar library (empirical + theoretical)
 - Starburst99: 91Å-160µm, 1Myr-1Gyr, Z=0.001-0.04, purely theoretical stellar library
 - PEGASE: 220Å-5µm, 1Myr-20Gyr, Z=0.0004-0.05, purely theoretical stellar library
 - **González Delgado et al. 2005**: 3000-7000Å, 4Myr-17Gyr, Z=0.004-0.019, purely theoretical stellar library

Mixed

Theoretical

Systematic Shift in Line Ratios

Discrepancies Biggest at Low Luminosities

• MILES templates give the best results

- Chen, Zaw, & Farrar, 2018
- Better stellar library than BC03, fits favor higher-than-solar metallicities

The Catalog

Identified AGNs

8491 AGNs

 Table 2. AGN Numbers and Fractions

	Type 1	Type 2 K01	Type 2 K03
$6\mathrm{dF}$	877 (8.47±0.30%)	$1088~(10.51\pm0.33\%)$	2495 (24.09 \pm 0.54%)
SDSS	811 (11.47±0.43%)	1511 (21.38 $\pm 0.61\%$)	2455 (34.73±0.81%)
FAST	$137~(2.18 \pm 0.19\%)$	$714~(11.39 \pm 0.45\%)$	1145 (18.26 $\pm 0.59\%$)
CTIO	$104~(3.65 \pm 0.36\%)$	$294~(10.31 \pm 0.63\%)$	$467 (16.38 \pm 0.82\%)$
Total	1929 (7.27±0.17%)	$3607~(13.59 \pm 0.24\%)$	$6562 \ (24.72 \pm 0.34\%)$

Zaw, Chen, & Farrar, 2019

- Broad-line: Halpha FWHM > 1000 km/s, Narrow-line: Kauffmann et al. 2003 criteria
- AGN properties: names, coordinates, type, subsample, S/N
- Additional: Fluxes, line widths, errors
- Users can customize section criteria

AGNTypes

- Spectral S/N and resolution affect T1:T2 and Sy:LINER ratios
 - Higher TI: T2 for lower resolution
 - Higher S/N identifies more LINERs

Inhomogeneities

Detection rates vary across the sky and in z (due to sky coverage of different subsamples)

Zaw, Chen, & Farrar, 2019

Inhomogeneities: Subsamples, Spatial

Zaw, Chen, & Farrar, 2019

More homogeneous within a subsample

Inhomogeneities: Subsamples, Redshift

More homogeneous within a subsample

Data Quality Effects and Statistical Corrections

Effects of Spectral S/N S/N of Lines

S/N in Continuum Regions

Better measure of spectral quality

Zaw, Chen, & Farrar, 2019

AGN Identification Rate Determined by Continuum S/N

Zaw, Chen, & Farrar, 2019

Statistically Corrected Catalog

Uncorrected

Corrected

Also accounts for galaxies without spectra

Conclusions

- A pure, complete, homogeneous, all-sky AGN catalog is necessary for studies of astrophysical particle acceleration
- Constructed an AGN catalog from a uniform, complete parent galaxy sample
- Statistically correct for incompletenesses and inhomogeneities resulting from differences in data quality
- Started cross-correlation studies with BAT105, WISE, and Radio (all sky) AGN catalogs

Backup Slides

SDSS Data: DR8 with BC03 templates, Ours with MILES templates

Zaw, Chen, & Farrar, 2019

Single Stellar Population (SSP) Models

Stellar Library Spectra of stars Data and/or Theory Isochrone Evolutionary model Age and metallicity

Initial Mass Function Empirical function

n

D

S

23

Output

Single Stellar Population Models Spectra of stellar populations Empirical, theoretical, or mixed Age, Metallicity, Wavelength range

Origin of Discrepancies

Chen, Zaw, & Farrar, 2018

- Comparison with theoretical SSPs
- BC03 based on a smaller, less well calibrated stellar library. Corrected colors but not lines for younger populations.

Origins of Discrepancies

Thomas et al. 2013 use only solar metallicity templates from Maraston & Strombeck 2011

Our fits favor higher metallicity templates

