Finding the First Quasars with JWST, Euclid and WFIRST

Daniel Whalen ICG, Portsmouth

Supermassive Black Holes: Environment and Evolution, Corfu, 19-22 June 2019

The First Quasars

- over 160 quasars have now been found at z > 6
- ULAS J1120+0641 is a 2 billion M_☉ SMBH at z = 7.1 (Mortlock et al. 2011, Nature, 474, 616)
- ULAS J1342+0298 is an 800 million M_☉ BH at z = 7.5 (Banados et al. 2018, Nature, 553, 173)
- how do BHs this massive form 650 Myr after the Big Bang?

SMBH Seed Formation Pathways

from Volonteri, ARAA, 2010, 18, 279

Atomic Cooling and Supermassive Primordial Star Formation

Supermassive Pop III Stellar Evolution Haemmerle + DJW 2018 MNRAS, 474, 2757

Supermassive Pop III Stellar Mass at Collapse Woods + DJW+ 2018 ApJL, 842, 6

SMS NIR AB Magnitudes

Surace, DJW+ 2018, ApJ, 869L, 39 Surace, DJW+ 2019, MNRAS in rev

JWST

SMBH Growth in Cold Accretion Flows

Enzo Supermassive Black Hole Formation Simulations Smidt, DJW et al. 2018, ApJ 865, 126

- 100 Mpc box, initialized at z = 200
- x-ray emission from a 10⁵ seed in a 2 x 10⁸ solar mass halo at z ~ 19
- single photon energy of 1 keV adaptive raytracing photon transport with the MORAY radiation package
- 10 levels of refinement, resolution of 30 pc
- subgrid alpha disk model of accretion
- multiphase star formation in host galaxy (SN)
- stellar winds, ionizing UV and SN feedback due to SF in the host galaxy of the BH are included

DCBH Birth

DCBH NIR AB Magnitudes at Birth Whalen, Bernhardt, Surace, Hirschmann & Ziegler 2019 in prep

JWST NIRCam

JWST MIRI

H II Region of the Quasar

z = 17

z = 7

Primordial Star Formation Regulates SMBH Growth Rates from z > 12

SMBH Mass

SFR ~ 250 M_{\odot} in the host galaxy at z = 7.1, in agreement with obs (Barnett et al. 2015, A&A, 571, 33)

J1120 Quasar Proximity Zone at z = 7.1

Metal and Dust Enrichment in the Host Galaxy

The metallicity in the host galaxy at z = 7.1 is approximately solar, in agreement with strong C lines (Dunlop 2013)

Euclid H Band Magnitudes

Conclusions

- JWST will be sensitive enough to detect every stage of primordial quasar evolution (SMS, DCBH, and SMBH)
- but its narrow survey footprints may not encounter many of these objects
- WFIRST and Euclid can detect these quasars at z ~ 12 – 14
- their large survey areas will probe the evolution of the first quasars at much earlier stages of their growth than previously possible