Obscured AGN in the field of J1030+0524: the X-ray and optical/infrared perspective

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Alessandro Peca C. Vignali, R.Gilli, M. Mignoli and R. Nanni

Outline

Aim: disclose and characterise obscured AGN in the J1030 field

Method: redshift from X-ray spectra + SED fitting

- Introduction
- The field around the z = 6.31 SDSS QSO J1030+0524
- Obscured AGN sample selection
- Redshifts from X-ray analysis and spectral simulations
- Photometric redshifts from SED fitting (optical/IR bands)
- Obscured AGN properties and results
- Conclusions and future prospects

Introduction: why obscured AGN?

- X-ray background synthesis models predict a large number of heavily obscured AGN (e.g.; Gilli+07; Treister+09; Akylas+12)
- Deep X-ray surveys show that ~80-90% of the growth of black holes occurs during the obscured phases
- The number of obscured AGN seems to increase at high redshift (e.g.; Vito+18)

Deep X-ray fields are needed

Redshifts are fundamental to derive intrinsic AGN properties and study their evolution

20	.0	6.2	19
20	•0	U	

The J1030 field: deep Chandra observation

See Nanni+18 for further details

The field was observed with Chandra/ACIS-I for a total of ~500ks and a FoV ~335 arcmin²:

J1030 is the 4th deepest X-ray survey ever observed

> 250 sources identified (Nanni et al. in prep.)

20.06.19

The J1030 field: optical/NIR/MIR imaging

J1030 offers a great multi-wavelength coverage (see <u>http://www.oabo.inaf.it/~LBTz6/1030/</u> for a complete review)

Instrument	Bands	Depth $[5\sigma]$	
LBT/LBC (Morselli+14)	r, i, z	27.5, 26, 25	
CFHT/WIRCam (Balmaverde+17)	Y, J	24.5, 25	
MUSYC BVR	U, B, V, R, I, z	25-26	
MUSYC K wide	U, B, V, R, I, z, K	21	
MUSYC K deep	U, B, V, R, I, z, J, H, K	23	
Spitzer/IRAC	ch1, ch2	22-23	

+ VLT, Keck and LBT spectroscopic observations in optical bands

2	0	0	6	1	0
2	υ.	U	U.	. 1	. 7

Corfu, Greece

Obscured AGN sample selection: HR

How to select obscured AGN?

I. $HR = \frac{H-S}{H+S} \ge -0.1$ is a (redshift dependent) absorption indicator

II. Net counts > 50 : in order to identify the 6.4 keV Fe emission line, 7.1 keV Fe absorption edge and/or the photoelectric cut-off

→ 76 candidates (net counts ~ 80)

20.06.19

X-ray redshifts from low-count statistics spectra are not trivial to derive The significance of spectral features needs to be further evaluated

2	n	(1	6	1	0
2	U	. ()	U	•]	19

X-ray redshifts from low-count statistics spectra are not trivial to derive The significance of spectral features needs to be further evaluated

X-ray spectral simulations

Spectral simulations

Starting from the **real** extracted **spectra**:

- same instrument response (arf, rmf)
- same statistics
- same background

Determining the probability that an observed line is a statistical fluctuation or not.

20.06.19

Spectral simulations

Starting from the **real** extracted **spectra**:

- same instrument response (arf, rmf)
- same statistics
- same background

Determining the probability that an observed line is a statistical fluctuation or not Starting from a theoretical model (absorption * (powerlaw + gauss)):
real responses and background
same total exposure time (~500 ks)
typical obscured AGN physical parameters (N_H, z, flux, lumin.)

Verify for which parameters and statistics redshifts can be derived

20.06.19

Model: absorption * powerlaw

match% (z, N_H, cts) =
$$\frac{\text{num} (z_{X,\text{fit}} \pm \Delta z)}{\text{num} (z_{\text{sim}})}$$

See Peca et al. in prep. for details

20.06.19

Corfu, Greece

See Peca et al. in prep. for details

20.06.19

Corfu, Greece

SED fitting: optical/infrared bands

Due to the obscuring material, the host galaxy dominates the AGN optical emission (see Hickox+18 for a review)

$$\downarrow \quad \downarrow \quad \downarrow$$

We performed photometric redshifts through a SED fitting procedure (*hyperz*, Bolzonella+00).

SED fitting: optical/infrared bands

Due to the obscuring material, the host galaxy dominates the AGN optical emission (see Hickox+18 for a review)

$\downarrow \downarrow \downarrow \downarrow$

We performed photometric redshifts through a SED fitting procedure (*hyperz*, Bolzonella+00).

A new LBT spectroscopic campaign has just been completed

20.06.19

LBT strategic program: optical/NIR spectroscopy

9 LBT/MODS masks (4h/mask, PI R. Gilli) Targets: ~200 X-ray sources Completed in May 2019

We could confirm the redshift solutions for the detected sources: it is challenging to derive z_{spec} for faint sources (low S/N)!

20.06.19

Corfu, Greece

Obscured AGN in the J1030 field: redshift results

Photometric redshifts suggest that it is possible to get an X-ray solution even for low-count statistics in presence of (heavily) obscured AGN.

20.06.19

Corfu, Greece

Obscured AGN in the J1030 field: redshift results

Photometric redshifts suggest that it is possible to get an X-ray solution even for low-count statistics in presence of (heavily) obscured AGN.

20.06.19

Corfu, Greece

Obscured AGN in the J1030 field: redshift results

Preliminary results

Redshift solutions: X-ray z if Fe K α line is detected, photometric z elsewhere.

Consistency test using the obtained solutions: good agreement with the expected HR trends

Photometric redshifts suggest that it is possible to get an X-ray solution even for low-count statistics in presence of (heavily) obscured AGN.

20.06.19

Corfu, Greece

Obscured AGN in the J1030 field: properties

• Column densities mostly in the Compton-thin regime, with a median value of $N_H \approx 2 \times 10^{23} cm^{-2}$

Preliminary results

20.06.19

Obscured AGN in the J1030 field: properties

Preliminary results

• Column densities mostly in the Compton-thin regime, with a median value of $N_H \approx 2 \times 10^{23} cm^{-2}$

20.06.19

Corfu, Greece

Conclusions: why should we use this method?

- The X-ray emission can reveal obscured AGN, even if the optical and NIR emission is completely extincted
- X-ray redshifts are a powerful tool once we have limited information/photometry and play an important role in the study of these objects

Where we should use this method:

- X-ray deep fields: e.g., in CDFS there is ~5% of X-ray detections without optical counterparts
- Spectroscopic campaigns are often difficult to obtain and deriving z_{spec} is challenging (very long exposure time and low S/N for faint objects)
- For highly obscured AGN, optical spectra are not always able to uniquely identify the AGN emission
- X-ray spectral simulations can be used for predictions about obscured AGN detection in future X-ray missions (e.g., eRosita, Athena)

Thank you for your attention! ευχαριστώ!