Optical and Interpretative Astronomy Group (OPINAS)

An Ultramassive Black Hole in the unusual Galaxy Holm 15A

Kianusch Mehrgan J. Thomas, R. Saglia, P. Erwin, R. Bender, M. Kluge, X. Mazzalay

Holm 15A: Brightest Cluster Galaxy of Abell 85

Cusps & Cores: Centers of ETGs

Surface brightness center

Total brightness galaxy

Less massive ETGs

Steep power-law surface brightness 'cusps'

Massive ETGs

Shallow central Surface brightness 'cores'

Holm 15A: Huge, Ultra-Diffuse Core

Thomas et al. 2016, Nature 532, 340

Cores grow linearly with BHs -> Holm 15A expected to host UMBH with $M_{BH} \sim 10^{11} M_{\odot}$

Less massive ETGs

Steep power-law surface brightness **'cusps'**

<u>Holm 15A</u>

~ 2 mag fainter than any Core with dynamical study

Largest known Core: (4.57 ± 0.06) kpc

(4.57 ± 0.06) kpc López-Cruz et. al 2014, ApJ 795, 31

Core Scouring

Merging SMBHs ejecting central stars via gravitational slingshots

e.g. Begelman et al. 1980, Nature 287, 307; Milosavljević & Merritt, 2001, ApJ, 563, 34; Trujillo et al. 2004, AJ, 127, 1917

<u>Cuspy + Cuspy dissipationless Merger:</u>

Without Black Holes -> Cuspy Remnant

NGC 4621: Cuspy ETG

NGC 720: Cored ETG

With Black Holes -> Cored Remnant

N-body Merger Simulations Rantala et al. 2018, ApJ, 864, 113; Rantala et al. 2019, ApJ, 872, 113

MUSE wide-field Spectroscopy

- 60 x 60 $\operatorname{arcsec}^2 \triangleq 60 \times 60 \operatorname{kpc}^2 \operatorname{at} z = 0.055$
- Sphere-of-influence of BH: $M(r < r_{SOI}) \equiv M_{BH}$
- Min. expected BH ~ 5 x 10⁹ M $_{\odot}$, SOI with 2 x r_{SOI} = 4"

-> Our PSF = 0.72" FWHM -> can resolve BH by factor > 5 Resolution sufficient for robust BH detection! Rusli et. al 2013a, AJ, 146, 45

Schwarzschild Dynamical Modeling

Previously used for M87 Black Hole: Gebhardt & Thomas 2009, ApJ, 700, 1690: MBH = (6.4 ± 0.50) x 10⁹ M_☉ M_{BH} = (6.5 ± 0.80) x 10⁹ M_☉ Event Horizon 2019 (ApJ 875, L4):

- Gravitational Potential Φ + 10.000+ stellar orbits
- Orbits **constrained** to reproduce observed Photometry
- ϕ -> defined by set of 5 Parameters which we optimise for:

updated version Thomas et al. (2004), MNRAS, 353, 391

Detecting BH-Binary Core Scouring

Stars on radial orbits three-body with BHs: <u>Gravitational slingshots</u> Tangential orbits angular momentum: <u>Don't interact with BHs</u>

=> Tangential bias in cores, $\beta < 0$!!

$$\beta = 1 - \frac{\sigma_t^2}{\sigma_r^2}$$

Our Models, unlike Jeans-Models, **Allow velocity anisotropy variation**

->Dynamical imprint of merger history!

SINFONI BH Survey: Saglia et al. 2016, ApJ, 818, 47 Dynamics: Thomas et al. 2014, ApJ ,782, 39

Most massive dynamically determined Black Hole so far:

Holm15A: $M_{BH} = (4.0 \pm 0.8) \times 10^{10} M_{\odot}$ (Mehrgan et al. 2019 soon in submission)

NGC 4889: M_{BH} = (2.1 ± 0.99) x 10¹⁰ M_{\odot} (McConnell et al. 2012, ApJ, 765, 179)

NGC 1600: M_{BH} = (1.7 ± 0.15) x 10¹⁰ M_{\odot} (Thomas et al. 2016, Nature, 532, 340)

. . .

Most massive dynamically determined Black Hole so far:

Holm15A: $M_{BH} = (4.0 \pm 0.8) \times 10^{10} M_{\odot}$ (Mehrgan et al. 2019 soon in submission)

NGC 4889: M_{BH} = (2.1 ± 0.99) x 10¹⁰ M_☉ (McConnell et al. 2012, ApJ, 765, 179)

NGC 1600: M_{BH} = (1.7 ± 0.15) x 10¹⁰ M_☉ (Thomas et al. 2016, Nature, 532, 340)

Comparison N-Body Merger Simulations

<u>Cuspy + Cuspy = 1st gen Cored</u> 2 x (M_{BH} = 8.5 x 10⁹ M_{\odot}) ~ NGC 1600

Holm15A is <u>too smooth and</u> <u>exponential-like</u> compared to known shallow power-law cores?!

Holm15A has less tangential bias in core...

Comparison N-Body Merger Simulations

 $Cuspy + Cuspy = 1^{st} gen Cored$ 2 x (M_{BH} = 8.5 x 10⁹ M_☉) ~ NGC 1600

Cored + Cored = 2nd. gen Cored 2 x (M_{BH} = 1.7 x 10¹⁰ M_{\odot}) ~ NGC 1600 + NGC 1600 → Similiar to Holm15A's

Repeated binary BH core-scouring dilutes tangential bias in cores!

Closer to Holm15A

MPE

Alternative: AGN Feedback?

Holm 15A at center of cool core!

- no counter rotating core
- hosts AGN (LINER)

AGN outflow simulations

Martizzi et al. 2012, MNAS, 422, 3081:

=> Irreversibly transfer energy to stars & DM

- equal stellar & DM density in core??
- Many cores: stellar mass 1.5-2 x Kroupa IMF e.g. Thomas et al. 2011, MNRAS, 415, 545; Spinello et al. 2011, MNRAS, 416, 3000; Cappellari et al. 2012, Nature, 484, 485
- Holm 15A ~ 1.6 x Kroupa! DM tracing stars?

Conclusions & Outlook

• Abell 85 BCG, Holm15A hosts UMB with M_{BH} = (4.0 ± 0.80) x 10^{10} M_{\odot}

- 2nd gen. BH merger: exponential light profile & orbits & & scaling
- AGN feedback: exponential light profile & (orbits??) & (scaling??)
- Found ~30 rare Holm15A-like exponential (n < 1.5) BCGs

... all ultra-faint cores!

Might hold the key to understanding different core formation channels

