IR View of of X-ray AGN: The Covering Factor of Gas and Dust in Swift/BAT AGN

Ichikawa et al. '17, ApJ, 835, 74 Ichikawa et al. '19, ApJ, 870, 31

Kohei Ichikawa (市川幸平) FRIS fellow, Tohoku University, Japan

In collaboration with

IR View of of X-ray AGN: The Covering Factor of Gas and Dust in Swift/BAT AGN

Ichikawa et al. '17, ApJ, 835, 74 Ichikawa et al. '19, ApJ, 870, 31

Kohei Ichikawa (市川幸平) FRIS fellow, Tohoku University, Japan

In collaboration with

Researcher ~

Feature ~

Frontier Research Institute for Interdisciplinary Sciences Tohoku University

ApJ, 835, 74 14 Assistant Professors from January - April, 2020 ApJ, 870, 31

Closing Date for Application: August 1, 2019

About FRIS ~

2019.05.20

Number of position and job

14 Assistant Professors

FRIS fellow, Tohoku University

IR View of of X-ray AGN: The Covering Factor of Gas and Dust in Swift/BAT AGN

Ichikawa et al. '17, ApJ, 835, 74 Ichikawa et al. '19, ApJ, 870, 31

Kohei Ichikawa (市川幸平) FRIS fellow, Tohoku University, Japan

In collaboration with

(Mid-)IR emission of AGN= nuclear dust

Nuclear (MIR bright) dusty region: future fuel of SMBHs

Urry & Padovani '95

(Mid-)IR emission of AGN= nuclear dust Nuclear (MIR) dust emitting region is compact w/ < 10pc

Urry & Padovani '95

Nenkova+08; Ramos Almeida+11 see also Tanimoto+19 and Buchner's talk

(Mid-)IR emission of AGN= nuclear dust Nuclear (MIR) dust emitting region is compact w/ < 10pc

Urry & Padovani '95

Nenkova+08; Ramos Almeida+11 see also Tanimoto+19 and Buckner's talk e.g., Hoenig+12, Wada+15, Tazaki & Ichikawa submitted

Sample size: limited to very nearby AGN (actually, mainly Circinus)

Geometry of (nuclear) dust emission Nuclear (MIR) dust emitting region is compact w/ < 10pc

Urry & Padovani '95

Nenkova+08; Ramos Almeida+11 see also Tanimoto+19 and Buckner's talk e.g., Hoenig+12, Wada+15, Tazaki & Ichikawa submitted.

Q. How much do we know the (averaged) dust geometry? $C_{\rm T}({
m dust}) \propto L_{\rm IR}({
m AGN})/L_{
m bol}({
m AGN})$ Our Goal: Obtaining C_T(dust) using the complete AGN sample

Most of AGN are elusive (=obscured) XRB indicates that most of AGN are obscured

energy density peaks at ~30 keV

Most of AGN are elusive (=obscured) XRB indicates that most of AGN are obscured

✓ energy density peaks at ~30 keV
 ✓ E>10 keV: best energy band to detect obscured (log N_H>22) AGN

Swift/BAT AGN (14-195 keV) 70 month catalog: 836 AGN (728 non-blazars)

FYI, 105 month catalog is public (see Oh et al., '18)

✓ most complete up to logN_H=24.0 in the local Universe (Koss+16; Ricci+15)

☑ 606 out of 728 have z info and are located at |b|>10°

BASS

BASS=BAT AGN Spectroscopic Survey Multi-wavelength Follow-up of BAT-AGN

co-lead by M. Koss, *C. Ricci*, B. Trakhtenbrot, *K. Oh*

- \checkmark X-ray (Lx, N_H, Γ) Ricci et al. (2017)
- \checkmark Optical Spec (M_{BH}, λ_{Edd}) Koss et al. (2017)
- □ NIR Spec (σ, M_{BH}) Lamperti et al. (2017)

by Courtesy of K. Oh

BASS=BAT AGN Spectroscopic Survey Multi-wavelength Follow-up of BAT-AGN

co-lead by M. Koss, *C. Ricci*, B. Trakhtenbrot, *K. Oh*

- \checkmark X-ray (Lx, N_H, Γ) Ricci et al. (2017)
- \checkmark Optical Spec (M_{BH}, λ_{Edd}) Koss et al. (2017)
- □ NIR Spec (σ, M_{BH}) Lamperti et al. (2017)

by Courtesy of K. Oh

BASS=BAT AGN Spectroscopic Survey Multi-wavelength Follow-up of BAT-AGN

co-lead by M. Koss, *C. Ricci*, B. Trakhtenbrot, *K. Oh*

- \checkmark X-ray (Lx, N_H, Γ) Ricci et al. (2017)
- \checkmark Optical Spec (M_{BH}, λ_{Edd}) Koss et al. (2017)
- □ NIR Spec (σ, M_{BH}) Lamperti et al. (2017)

by Courtesy of K. Oh

More studies and Data, see **BASS website!**

Today's topic

✓ IR catalog (3-500 um) *Ichikawa et al. (2017a), ApJ, 835, 74*

✓ IR SED Decomposition; *Ichikawa et al. (2019), ApJ, 870, 31*

IR counterparts of BAT AGN ☑ 3-500 um IR data from WISE, AKARI, IRAS, and Herschel

(see Ichikawa+17 for more details)

G01/606 MIR (, NIR) and 402/606 FIR counterparts
 suitable for the AGN dust/host galaxy studies
 IR Data is already public. <u>http://iopsdence.iop.org/0004-637X/835/1/74/suppdata/apjaa5154t1_mrt.txt</u>

SED Decomposition in IR bands

☑ SED Decomposition is done using simple AGN/(SB+stellar) templates

(see Mullaney+11 and Ichikawa+19 for more details)

SED Decomposition in IR bands

☑ SED Decomposition is done using simple AGN/(SB+stellar) templates

(see Mullaney+11 and Ichikawa+19 for more details)

☑ SED decomposition: 587/606 sources

☑ Disentangling AGN/host galaxy (SB+stellar) component

=> AGN IR emission w/o host galaxy contamination FYI, All info incl. IR SEDs, decomposed SEDs, M_{BH}, L_{x, bol} are now public

Comparison with high-spatial resolution observations

Comparison with high-spatial resolution observations

☑ SED Decomposition works well!

46 45 Ś erg 44 High spatial. resol. obs. Asmus) -2µm 43 42 og(L 41 Ichikawa+19 40 L_{12um} "after" SED 42 41 43 45 46 40 44 $\log(L_{12\mu}^{(AGN)}/erg s^{-1})$ decomposition

 \square SED decomposition reproduces L_{12um} of 0."3-0."7 scale high spatial resolution observations (Asmus+14;15)

L_{IR}(AGN) vs. L_{14-150ke}v

Our study

 L_{MIR}/L_x (type-1) ~ L_{MIR}/L_x (type-2)

MIR emission: isotropic

$log L_{MIR} \propto 1.06 log L_X$.: slope b=1.06 (+/-0.03)

✓ b=0.9-1.1 from local/X-ray selected AGN

(e.g., Gandhi+09; Ichikawa+12,+17; Asmus+15; Mateos+15)

$L_{bol} \text{ dependence of } R = L_{IR}(AGN)/L_{bol}$ $C_{T}(dust) \propto L_{IR}(AGN)/L_{bol}(AGN)$

 \checkmark Very shallow L_{bol} dependence w/ log R = 4.5 - 0.12 log L_{bol}

R=L_{IR}(AGN)/L_{bol} => C_T(dust) L_{IR}(AGN)/L_{bol} vs. C_T (see Stalevski+16)

type-1 AGN

type-2 AGN

Dust Covering factor (C_T) vs. L_{bol} Lx => L_{bol} (const) and L_{IR}(AGN)/L_{bol} => C_T (see Stalevski+16)

Dust Covering factor (C_T) vs. L_{bol} Lx => L_{bol} (const) and L_{IR}(AGN)/L_{bol} => C_T (see Stalevski+16)

C_T (dust): 0.4-0.6, very weak or almost independent of L_{bol} (see also Merloni+14, Netzer+16, Stalevski+16, Mateos+17)

Dust Covering factor (C_T) vs. L_{bol} Lx => L_{bol} (const) and L_{IR}(AGN)/L_{bol} => C_T (see Stalevski+16)

✓ C_T(dust) < C_T (dust+gas) <= obtained from X-ray obs.
 ✓ There is a dust-free (X-ray) obscuring region

Dust Covering factor (C_T) vs. L_{bol} Lx => L_{bol} (const) and L_{torus}/L_{bol} => C_T (dust) (see Stalevski+16)

 ✓ C_T(dust) < C_T (dust+gas) <= obtained from X-ray obs.
 ✓ There is a dust-free (X-ray) obscuring region (in BLR?) 27 (see also Markowitz+14; Davies+15; Liu+18)

Dust Covering factor (C_T) vs. L_{bol} Lx => L_{bol} (const) and L_{torus}/L_{bol} => C_T (dust) (see Stalevski+16)

 ✓ C_T(dust) < C_T (dust+gas) <= obtained from X-ray obs.
 ✓ There is a dust-free (X-ray) obscuring region (in outflow?) 28 (see also Wada '15, Izumi+18)

Summary

Swift/BAT (14-195 keV) AGN catalog

- ☑ suitable sample of an unbiased census of AGN
- \square BASS provides L_X, N_H, M_{BH}, and λ_E
- ☑ almost complete 3-500 um IR catalog (601/606 at MIR, 402 at FIR, see Ichikawa et al. 17)

IR and X-ray properties of BAT AGN
 ✓ C_T(dust) < C_T (dust+gas) => dust-free obscuring region
 ✓ C_T (obscured) is (on average) always larger than C_T (unobscured)

see Ichikawa et al. (2017, 2019) for more details

Appendix

(Mid-)IR emission of AGN= nuclear dust

Nuclear (MIR) dust emitting region is compact w/ < 10pc

Urry & Padovani '95

(Mid-)IR emission of AGN= nuclear dust Nuclear (MIR) dust emitting region is compact w/ < 10pc

Urry & Padovani '95

Nenkova+08; Ramos Almeida+12 see also Tanimoto+19, Ogawa+19

(Mid-)IR emission of AGN= nuclear dust Nuclear (MIR) dust emitting region is compact w/ < 10pc

Urry & Padovani '95

Nenkova+08; Ramos Almeida+12 see also Tanimoto+19, Ogawa+19 e.g., Hoenig+12, Wada+15, Tazaki & Ichikawa submitted

Sample size: limited to very nearby AGN (actually, mainly Circinus)

Geometry of (nuclear) dust emission Nuclear (MIR) dust emitting region is compact w/ < 10pc

Urry & Padovani '95

Nenkova+08; Ramos Almeida+12 see also Tanimoto+19, Oqawa+19 e.g., Hoenig+12, Wada+15, Tazaki & Ichikawa in prep.

Q. How much do we know the (averaged) dust geometry? $C_{\rm T}({
m dust}) \propto L_{\rm IR}({
m AGN})/L_{
m bol}({
m AGN})$ Our Goal: Obtaining C_T(dust) using the complete AGN sample

Consistency with dust polar emission

✓ type-1/-2 has same distribution => isotropic emission

consistent with MIR polar emission or fountain model

obs: Honig+13,+14, see also Asmus+16 model: Wada 12, Wada+16

WISE IR color-color selection of AGN

WISE IR color-color selection of AGN

37

WISE IR color-color selection of AGN

BAT-AGN do not always locate at the IR selection areas of. Stern+12, Mateos+12
WISE IR color selections miss some AGN population

(see also Mateos+12, 13; Gandhi+16; Kawamuro+16; Tanimoto+16)

WISE IR color-color selection of AGN Ichikawa+17

☑ WISE IR color: insensitive to low-luminosity AGN

Dust Covering factor (C_T) for un-/obscured AGN

 C_T (obscured) is (on average) always larger than C_T (unobscured)
 => larger (line of sight) N_H sources tend to have larger (geometrical) C_T (see also Ramos Almeida+09;+11, Elitzur12, Ichikawa+15, Mateos+16, and Lanz+18)

IR-Pure AGN candidates

We found 9"IR-pure AGN" candidates

IR-Pure AGN candidates

We found 9"IR-pure AGN" candidates

Ichikawa+19

✓ FIR (up to ~100um) is dominated by AGN torus emission
 ✓ IR-pure AGN shows the SED w/ f_{22um} > f_{70um} > f_{160um}

IR-Pure AGN candidates

We found 9"IR-pure AGN" candidates

Ichikawa+19

FIR (up to ~100um) is dominated by AGN torus emission

 \square M_{BH}, L_{14-150keV} distribution is similar with the parent sample (<log M_{BH}>=7.8, <log L₁₄₋₁₅₀>=43.7)

Suggesting weaker SF activities in the host

good candidates of final stage AGN?

Success rate of WISE color selection

WISE IR color: insensitive to low-luminosity AGN
 <20% success rate for low-luminosity AGN of log Lx < 43

Comparison with high-spatial resolution observations

☑ Decomposition works really well!

Disentangling AGN/(SB+stellar) component
 suitable for the AGN torus/host galaxy studies

AGN contribution as a function of L_{BAT}

At high L_{BAT} end, contribution reaches
 ~100% at 12um, 80% at MIR (5-40um), and 50% at total IR
 At low L_{BAT} end, contribution goes down to
 ~20% at 12um, 20% at MIR (5-40um), and <10% at total IR
 SED decomposition is crucial for low-luminosity AGN

C_T: indicator of geometrical dust obscuration $L_{MIR} \propto L_{bol} C_{T <=>} C_{T} \propto L_{MIR}/L_{bol}$

Dust Covering factor (C_T) vs. L_{bol}

 $Lx => L_{bol}$ (Marconi+04) and $C_T \propto L_{MIR}/L_{bol}$ (see Stalevski+16)

Ichikawa+19

Different bol-correction does not change the main result

L_{bol} dependence of Dust Covering factor (C_T)

 \square Small scatter of L_x-L_{IR} relation gives a flatter L_{bol} dependence of C_T(dust) \square This is because $\log L_{IR}(AGN) \propto 1.06 \log L_X$ ∴ slope b=1.06 (+/-0.03)