3D feeding & feedback in obscured AGN

Joining Chandra - ALMA - SINFONI & MUSE/VLT to understand kinematics, inflows/outflows, obscuration, from kpc-scale down to the nucleus

> C. Feruglio thanks to:

Pepi Fabbiano - Manuela Bischetti - Martin Elvis - Alessandro Marconi - FF, EP, et al.

Chandra ACIS X-ray spectrum of CT AGN ESO428-G14

Chandra ACIS X-ray spectrum of CT AGN ESO428-G14

Soft line emission OVII, OVIII, NeIX, MgXI, SiXIII, etc.

Courtesy P. Fabbiano

Hard continuum

Fe K lines Neutral and Fe XXV

Fabbiano et al 2017, 2018a, 2018b, ApJ

Chandra ACIS X-ray spectrum of CT AGN ESO428-G14

ESO 428-G014

Chandra ACIS S T_{exp} ~154 ks

>2 kpc-scale hard continuum and ~ 1 kpc Fe Ka line emission Counts in extended component (1".5 – 8" annulus) are 30

% of counts in r < 1".5 (Fabbiano et al 2017, 2018a, b)

ESO 428-G014

5" = 560 pc

>2 kpc-scale hard continuum and ~ 1 kpc Fe Ka line emission Counts in extended component (1".5 – 8" annulus) are 30

% of counts in r < 1".5 (Fabbiano et al 2017, 2018a, b)

6.1-6.6 keV

Fe K α line

What produces this 100 pc - kpc hard X-ray emission?

Scattering from dense neutral ISM clouds

ALMA can tell

Courtesy P. Fabbiano

Hard continuum

Feruglio, Fabbiano+2019, arxiv1904.01483

1mm continuum

CO(2-1)

Feruglio, Fabbiano+2019, arxiv1904.01483

- compact continuum
- extended continuum

Feruglio, Fabbiano+2019, arxiv1904.01483

clumpy disk

- compact continuum
 extended continuum
- extended continuum

Feruglio, Fabbiano+2019, arxiv1904.01483

compact continuumextended continuum

- clumpy disk
- 200 pc lopsided circum nuclear ring (CNR) inner Lindblad resonance

1mm continuum

Feruglio, Fabbiano+2019, arxiv1904.01483

compact continuumextended continuum

clumpy disk

- 200 pc lopsided circum nuclear ring (CNR) inner Lindblad resonance
- <100 pc nuclear bar coming in from CNR towards AGN

Feruglio, Fabbiano+2019, arxiv1904.01483

compact continuumextended continuum

- clumpy disk
- 200 pc lopsided circum nuclear ring (CNR) inner Lindblad resonance
- <100 pc nuclear bar coming in from CNR towards AGN
- CO-cavity filled with continuum em.

Molecular gas kinematics: from galaxy scale to nucleus

Feruglio, Fabbiano+2019, arxiv1904.01483

- large scale velocity gradient
- deviations from smooth velo gradient in bi-conical structure

3DBAROLO model

- disk rotation +
- bi-conincal wide angle molecular outflow along ionisation cones

$$\begin{split} \dot{M}_{OF} &= 0.8 (\alpha_{CO}/0.8) \ M_{\odot}/yr \\ R_{OF} &\sim 700 \ pc \end{split}$$

 increased vel dispersion at CNR and nucleus

Feeding the AGN

Super-resolution CO maps to trace gas kinematics at nucleus

Feeding the AGN

Super-resolution CO maps to trace gas kinematics at nucleus

Non rotational motion in inner 80 pc velocity increases toward nucleus

C. Feruglio - Super Massive Black Holes: Environment & Evolution, Corfu, 19-22 June 2019

Feeding the AGN

Super-resolution CO maps to trace gas kinematics at nucleus

Non rotational motion in inner 80 pc velocity increases toward nucleus

C. Feruglio - Super Massive Black Holes: Environment & Evolution, Corfu, 19-22 June 2019

 Nuclear CO-bar
 overlaps with most CT region (Fabbiano+18) N(H₂)~ 2 10²³ cm⁻²

Nuclear CO-bar

- overlaps with most CT region
 (Fabbiano+18) N(H₂)~ 2 10²³ cm⁻²
- Drives inflow at rate $\dot{M}_{in} = v_{max,R_{in}} \times M(H_2)/R_{in} \sim 2 M_{\odot}/yr$ $R_{in} = 100pc$; $v_{max,R_{in}} = 50km/s$

Nuclear CO-bar

- overlaps with most CT region
 (Fabbiano+18) N(H₂)~ 2 10²³ cm⁻²
- Drives inflow at rate $\dot{M}_{in} = v_{max,R_{in}} \times M(H_2)/R_{in} \sim 2 M_{\odot}/yr$ $R_{in} = 100pc$; $v_{max,R_{in}} = 50km/s$

 $r_B \sim 1pc < <$ inner bar Fragmentation & SF before reaching AGN? No because $t_{dyn} < < t_{dep}$

 $t_{dep} = M_{gas} / SFR \sim 30 Myr$ $t_{dyn} = R / v(R) \sim 2 Myr$

Nuclear CO-bar

- overlaps with most CT region
 (Fabbiano+18) N(H₂)~ 2 10²³ cm⁻²
- Drives inflow at rate $\dot{M}_{in} = v_{max,R_{in}} \times M(H_2)/R_{in} \sim 2 M_{\odot}/yr$ $R_{in} = 100pc$; $v_{max,R_{in}} = 50km/s$

 $r_B \sim 1pc < <$ inner bar Fragmentation & SF before reaching AGN? No because $t_{dyn} < < t_{dep}$

 $t_{dep} = M_{gas} / SFR \sim 30 Myr$ $t_{dyn} = R / v(R) \sim 2 Myr$

 $\dot{M}_{BH} = L_{bol}/\epsilon c^2 = 0.007 \ M_{\odot}/yr \ for \ \epsilon = 0.1$ $0.07 \ M_{\odot}/yr \ for \ \epsilon = 0.01$

Large fraction of gas lost in outflow (Sadowski2016)

Chandra+ALMA+SINFONI Feedback @nucleus

Chandra+ALMA+SINFONI Feedback @nucleus

[OIII] velocity

[OIII] dispersion

[OIII] velocity

[OIII] dispersion

[OIII] velocity

[OIII] dispersion

[OIII] velocity

[OIII] dispersion

Biconical outflow H_{2,warm} out to 170 pc CO out to 700 pc **Gas cooling while leaving AGN**

Conclusions

- I. kpc cold (CO) molecular outflow ~ ionized outflow
- 2. Joins smootly with warm molecular outflow on hundreds pc scale
- 3. Nuclear CO inflow (<80pc) >> MdotBH
- 4. CO nuclear bar coincident with Chandra HR peak emission
- 5. Chandra HR extended emission coincident with warm molecular gas outflow (no CO).
- 6. Extended hard X-ray emission probably scattering from both cold and warm molecular gas.

Other similar cases: NGC5643 Fabbiano+2018 & Alonso-Herrero+2018 NGC2110 Rosario+2019 Circinus Kawamuro's talk and more