

Supermassive Black Holes: Environment and Evolution CORFU, 19-22 June 2019

hole conjecture for one jetted gamma-ray blazar

Stefano Ciprini

The binary supermassive black

1. National Institute for Nuclear Physics (INFN), **Roma Tor Vergata Section** 2. Space Science Data Center, Italian Space Agency (SSDC ASI), Roma

On behalf of the Fermi LAT Collaboration In collaboration mainly with Sara Cutini, Stefan Larsson

Supermassive Black Holes: Enviroment and Evolution 19-22 June 2019, Corfu, Greece

BHs, SMBHs and binary-SMBHs

SMBHs

Protogalaxy

Mergers of

protogalaxies

10 (⊚M)

Pop III

10

stellar seeds

Nuclear cluster

d generation stars

4

Nuclear cluster

Lookback time (Billions of years)

Direct collapse

Stellar black holes (BHs): ubiquitous, widespread in all galaxies. BHs formed when the first stars started to form and continued to form until the present era.

Super Massive Black Holes (SMBHs): ubiquitous in the center of galaxies. SMBHs are formed from seeds, and formed early at the cosmic dawn. \rightarrow Understanding galaxy bulges sheds light on SMBHs growth.

Black hole mass desert. Intermediate mass BHs still not detected or a natural genetic divide (inhabited)? A seeds-migration consequence? Transitional object population (clustering/accretion of stellar building blocks)?

6 gs □ History of the Universe: hierarchical structure formation, galaxy mergers, SMBH pairs \rightarrow SMBH binaries.

SMBHs pairs/binaries

Observational evidence for SMBHs pairs/binaries

Quasi periodicity in light curves (still controversial topic)

Many binary SMBHs candidates but few non-controversial confirmations! Why so few ? Large distances (difficult to resolve).
 Perhaps obscured. Distinguish from other phenomena (in-jet knots, lensing, etc.). Close pairs: current methods require at least one SMBH to be active.

□ Big challenge: to identify inactive binary SMBHs (the most abundant maybe). But they are also the most difficult to identify. Most binary SMBHs may form quiescently either in gas-poor or minor galaxy mergers without driving AGN activities.

4850

4900

4950

5000

5050

Pair of accreting SMBH in "single" galaxies (spatially resolved 10-pc to 100-pc)

Spatially unresolved (close if <0.1pc) binary SMBHs:

- from claims of quasi-periodic variability signatures:
- from observed helical/distorted/x-shape radio jets
- from observed double-peaked broad lines:
- other evidences: candidate TDEs, recoils, more exotic ones.

500

PG 1553+113: 9.5-year Fermi LAT gamma-ray light curves

rge Area Telescope (LAT) 1.1.2009 1.1.2010 air conversion telescope s-1] 1.1.2011 1.1.2012 1.1.2013 1.1.2014 1.1.2015 1.1.2016 1.1.2017 1.1.2018 3.0 Fermi LAT preliminary uge field of view (2.4sr 5 2.5 all-sky SURVEY: Flux (E > 1 GeV) [10⁻¹ 2.0 ky for 30' every 3h luge energy range uniformity, sensitivity 1.5 Public data depth, diffuse emission 1.0 science, populations Flux (E>1GeV) - 45 days time 0.5 ma-ray Burs studies, serendipity, 100 MeV) $[10^{-8} \text{ cm}^{-2} \text{ s}^{-1}]$ Flux (E > 100 MeV) $[10^{-8} \text{ cm}^{-2} \text{ s}^{-1}]$ Flux (E>100MeV) - 45 days time 12 variability monitor, bin NASA 10 transients search, cross-correlation, crossm Cape Canaveral 11-6-2008 match, time domain science, preliminar 4 M C 0 4 multifrequency 20 Flux (E>100MeV) - 20 days time bin NASA's Fermi Mission Finds Hints of astronomy, multi-Gamma-ray Cycle in an Active Galaxy 15 messenger astroparticle physics MULTIWA VELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113

2015's paper claims confirmed by the 9.5-year dataset
 Fermi LAT gamma-ray flux (E>100MeV and E>1GeV)
 light curves (lc) of PG 1553+113. (updated 11-year
 baseline in the paper in completion).

□ Regular/large-size time bins of 45-day and 20-day bin size. Temporal analysis cross-checks on adaptive bin and aperture photometry lcs.

 ❑ Long-term 2.2-year period oscillating trend visually evident, last oscillation more noisy. Predicted oscillation maximum observed. → 2.2-year quasi-periodicity in 4.5 cycles.

55000 56000 57000 58000 The light curve is fitted (green curve) with a coherent pulse consisting of 4 Fourier components.

stefano.ciprini@ssdc.asi.it - SSDC & INFN Rome

PG 1553+113: radio/optical/X-ray light curves

^O

□ 9.5-year LAT gamma-ray flux (E>100MeV 20-day bin) light curve of PG 1553+113 (red datapoints).

□ 12.5-year optical (R-band) light curve of PG 1553+113 (grey datapoints). Data: Tuorla+KVA monitor + Catalina CSS archive + KAIT monitor + Swift UVOT. Swift program on PG 1553+113 since 2015.

Multifrequency flux light curves built at: X-ray, optical (R and V bands) and radio (15 GHz) band.

→X-ray data obtained with Swift-XRT (thanks to past MW campaigns and dedicated follow-up program on PG 1553+113 started on Dec.2014).

→ Rossi-XTE (ASM) and Swift-BAT also under re-analysis. Optical band is assembled with Tuorla monitoring program, with Katzman Automatic Imaging Telescope (KAIT) monitoring data Catalina Sky Survey (CSS) data and follow-up of Swift-UVOT.

→ Radio 15 GHz from 40 OVRO (Richards+ 2011) and from MOJAVE(Lister+ 2009)

Optical-Gamma-ray

Discrete Cross-Corr function

0 LAG (Days)

Optical-gamma-ray crosscorrelation supports periodicity: 1) optical covers additional time epochs, more backwards in time 2) the optical-gamma energy bands can be described with similar periodicity plus erratic faster variations.

But optical/gamma noise and sampling different \rightarrow found similar quasi periodicity strengthen its w reality. Cross-corr. significance >95%.

stefano.ciprini@ssdc.asi.it - SSDC & INFN Rome

200

□ Morlet mother function (filled color contour). The right side panel shows the 1D smoothed (all-time-epochaveraged) power spectrum of the CWT scalogram. A signal power peak is in agreement with the 2.2 year value found with epoch fold/pulse shape analysis. This right side panel also include the Lomb-scargle Periodogram

PG 1553+113: EP, SF, DACF, PDS

□ Cross checks with further analysis methods and functions of the LAT 20-day bin, gamma-ray (E>100 MeV) light curve of PG 1553+113 are consistent with quasi-periodicity signal of T=2.2-year period.

1st order Structure Function (SF) plot

Discrete Auto-Correlation function (DACF) plot

Epoch folded light curve (flux E>100 MeV 20-day bin)

The epoch folding / pulse shape analysis.

The driving method in presence of a mostly regular sampling and coherent sinusoidal oscillations.

 Analysis based on period-folded and pulse shape light curve (4 Fourier components).

 Power is confirmed at a gamma-ray characteristic periodical timescale of 2.2+/-0.2 years in all the 9.5-year LAT gamma-ray light curves.

FFT PDS using aperture photometry counts and exposure weighted light curve [Credits NASA GSFC]

Two approaches for signal significance estimation against the red-noise (analysis in progress on the 11 year dataset).

Open astrophysical scenarios for PG 1553+113

□ Jet wobbling/precession/rotation/nutation on parsec scales (too short scale?). Curvature and helical-like structure of the relativistic jet, and/or of the radiating in-jet components (differential Doppler bulk beaming)

Alternatively disc-jet connection and symbiosis with induced quasi-periodical triggers and ejections (warped disks; accretion perturbations; intermittence, MHD/magneto-rotational instabilities, MHD stresses...).

Physical origin of jet wobbling is in changes in direction at the jet nozzle (disk precession, GR Lense-Thirring, orbital Keplerian motion, jet nutation, perturbations, thin disk warps Bardeen-Petterson effect, stresses) \rightarrow binary SMBHs scenario.

Pulsational accretion flow instabilities (MDAF) approximating periodic behavior \rightarrow periodic modulations in energy outflow efficiency. Or mechanims similar to low-freq. QPO of Galactic high-mass binaries. ADAF-disks can give precessing jets. Binary, gravitationally bound, SMBH system (total mass of 1.6X10^8 Msun, milliparsec separation, early inspiral gravitational-wave driven regime. Keplerian binary orbital motion with periodic accretion perturbations or jet nutation.

SMBHs Envir. & Evolution, Cortu, Greece, June 19-22, 2019

0.00

Conclusions

□ Time to consider supermassive BHs (SMBHs) in the search for (micro/nano-Hz) GWs. \rightarrow Next prospects for SKA, next generation PTAs projects and LISA.

□ Indirect astrophysical evidence for sub-pc spatially unresolved binary-SMBHs candidates (quasi periodic signals, pc-scale distorted radio-structures or helical patterns in jets, double-peaked broad lines, etc.) is an interesting BUT very-debated topic.

Blazar periodicity in blazar light curves is not a trivial problem and is not a trivial data analysis. Strong claims needs strong evidence.

□ Multifrequency cross-correlations and polarization data are important. Beware of sparse data, systematics, and ubiquitous red-noise.

Periodicity can be also explained by a variety of mechanisms different by a binary
 SMBH system. Anyway some astrophysics here works better with a binary system.

Discovery of about 2-year gamma-ray (and optical) periodicity in PG 1553+113 seems coherent and maintained also in the 10 year *Fermi* LAT dataset, with improving significance. Well correlated gamma-ray and optical light curves (important!).

□ Importance of astrophysical knowledge about the universal accretion phenomenon in classical astrophysics → provides a useful contribution to accreting SMBH physics in AGN, to jets physics, to GW and multimessenger physics.

□ Reasoning in a demography point of view:

1) the observed binary SMBH fraction;

2) nano-Nz gravitational radiation background and constraints by the current PTAs projects; → smaller secondary BH masses and lower power AGN are likely to be preferred; minor mergers are more likely to be observed electromagnetically.

Fermi Gamma-ray Space Telescope Heme Registration Abstracts Program Participants Hotel Localize FAQ SOCILOC Public Event For release: Oct. 17, 2018 Prof. Lynn Cominsky, Press Officer

NASA-GSFC + Fermi LAT Press Release of Oct. 17, 2018

SMBHs Envir. & Evolution, Corfù, Greece, June 19-22, 2019

