Identifying AGN in Local Dwarf Galaxies

Keir Birchall

James Aird, Mike Watson

Data

Optical

- Sample constructed from MPA-JHU
 - Contains 1,472,581 objects spectroscopically classified as galaxies from the SDSS DR8
- 835, 861 objects with reliable mass estimates

X-ray

- Sample constructed from XMM-Newton Serendipitous Survey (3XMM)
- Provides flux data in the 0.2 12keV energy range
 - Summed fluxes in the 2 4.5 keV & 4.5 12 keV and converted to luminosity
 - No rest-frame correction applied

Matching Optical & X-ray Data

 $M \leq 3 \times 10^9 M_{\odot}$

Source Extent < 10"

 $\frac{Optical \ to \ X - ray \ Separation}{X - ray \ Position \ Error} < 3.5$

86 possible AGN hosts

Identifying AGN Emission

Identifying AGN Emission

X-ray emission from 61 dwarf galaxies exceeds

$$\frac{L_{Observed}}{L_{XRB} + L_{Gas}} \ge 3$$

so are considered AGN

BPT Comparison

- 85% of X-ray selected AGN are missed using BPT selection techniques
- Of these mis-identified AGN, only one host has predicted optical AGN emission greater than that of the galaxy
 - AGN emission being dominated by star formation signatures

Black Hole Accretion Rate (BHAR)

BHAR gives compares the AGN bolometric luminosity with an approximate Eddington luminosity to give an idea of the activity of the central supermassive black hole:

$$\lambda_{BHAR} = \frac{25 L_X}{1.26 \times 10^{38} \times 0.002 M_{bulge}} \approx \frac{L_{Bol}}{L_{Edd}}$$
(Aird et al, 2012)

Correcting for Sample Incompleteness

----- Flux Limit = 10^{-14} erg/s/cm²

----- Flux Limit = 10^{-15} erg/s/cm²

klb64@leicester.ac.uk

3XMM Upper Limits

- X Х 2' ν**χ**ν SDSS klb64@leicester.ac.uk
- Uploaded co-ordinates for all dwarf galaxies in parent sample to 3XMM upper limits service
- Within 2' region returned, the flux upper limit of the X-ray detection closest to the dwarf galaxy was recorded
- All upper limits were placed in cumulative distribution and normalised by number of dwarf galaxies
- Correction fractions were taken from the observed AGN luminosity range

3XMM Upper Limits

- Uploaded co-ordinates for all dwarf galaxies in parent sample to 3XMM upper limits service
- Within 2' region returned, the flux upper limit of the X-ray detection closest to the dwarf galaxy was recorded
- All upper limits were placed in cumulative distribution and normalised by number of dwarf galaxies
- Correction fractions were taken from the observed AGN luminosity range

Limiting Observed AGN Sample

- Upper limits correspond to detections in a single 3XMM band
- Our observed AGN sample was divided into by host galaxy mass bins with corresponding 90% complete redshifts
 - Bespoke sensitivity functions were made for each bin
- 29 AGN in statistical sample

klb64@leicester.ac.uk $z \leq 0.06$

 $z \le 0.04$

AGN Fraction and Host Galaxy Mass

- Summing data points in each mass bin shows AGN fraction likely increases with host galaxy mass in full luminosity (up to 6%) and high luminosity (up to 1.2%) ranges
- As black holes get larger, lower accretion rates are needed to become detectable

AGN Fraction and Redshift

- Integrating under the power law allows us to predict the AGN fraction beyond our observations
- Adapting a plot from Mezcua et al (2018) we can see our data fits with other work in the field
- AGN fraction appears to be constant for high-mass, high-luminosity AGN out to at least $z \approx 0.7$

Thank You for Listening

- AGN in dwarf galaxies have a wide range of activity
- AGN fraction generally increases with host galaxy mass
- AGN fraction appears to be constant for high-mass, high-luminosity AGN out to at least $z \approx 0.7$
- BPT diagnostic not suited for identifying AGN in dwarf galaxies
 - Likely dominated by star formation signatures