Testing the disk-corona interplay in radiatively-efficient broad-line AGN

Riccardo Arcodia

Andrea Merloni, Kirpal Nandra, Gabriele Ponti

Outline

- The smoking gun: the $L_X L_{UV}$
- The disk-corona model

• The methodology: an **observational test**

• Results & Conclusions

The smoking gun of the Disk-Corona interplay

- Known for ~40 yrs, mostly as α_{0X} (Tananbaum+79 and many others)
- Used for many applications: CXRB, XLF, L_{BOL}, SEDs... (e.g. Marconi+04, Hopkins+07, Lusso+10) even for cosmology (e.g. Risaliti & Lusso 15, 18)
- But no conclusive physical explanation yet (but see Lusso & Risaliti 17, Kubota & Done 18)

The smoking gun of the Disk-Corona interplay

Outline

- The smoking gun: the $L_X L_{UV}$
- The disk-corona model

• The methodology: an **observational test**

• Results & Conclusions

AGN in a sweet spot of accretion $\dot{m} \approx (0.0x - 1)$

- Prescriptions from the standard accretion theory (Shakura&Sunyaev73, Pringle81)
- Modified with:

→ Generalised **viscosity law**:
$$\tau_{r\varphi} \propto P_{gas}^{\mu} P_{tot}^{1-\mu}$$

 $\mu = \frac{\text{DISK PHYSICS}}{\text{PRESCRIPTION}}$

AGN in a sweet spot of accretion $\dot{m} \approx (0.0x - 1)$

- Prescriptions from the standard accretion theory (Shakura&Sunyaev73, Pringle81)
- Modified with:

→ Generalised viscosity law:
$$\tau_{r\varphi} \propto P_{gas}^{\mu} P_{tot}^{1-\mu}$$

$$\mu = \frac{\text{DISK PHYSICS PRESCRIPTION of the second states of$$

 $\mu = \text{DISK PHYSICS}$

 $f_{max} = \frac{\text{MAX CORONAL}}{\text{STRENGTH}}$

Qualitative prediction: $L_X - L_{UV}$ slope < 1

Qualitative prediction: $L_X - L_{UV}$ slope < 1

Qualitative prediction: $L_X - L_{UV}$ slope < 1

Outline

- The smoking gun: the $L_X L_{UV}$
- The disk-corona model
- The methodology: an **observational test**

• Results & Conclusions

• Mock L_X , L_{UV} values depend on the BH ID card (m, \dot{m}, Γ_x)

- Mock L_X , L_{UV} values depend on the BH ID card (m, \dot{m}, Γ_x)
- We build a sample of radiatively-efficient BL AGN
 - Starting from 1787 BL AGN in **XMM-XXL** (Liu+16, Menzel+16)
 - Minimizing contamination from <u>extinction, X-ray absorption, X-ray</u> reflection
 - N = 379 (referred to as XMM-XXL)

- Mock L_X , L_{UV} values depend on the BH ID card (m, \dot{m}, Γ_x)
- We build a sample of radiatively-efficient BL AGN
 - Starting from 1787 BL AGN in XMM-XXL (Liu+16, Menzel+16)
 - Minimizing contamination from <u>extinction, X-ray absorption, X-ray</u> reflection
 - N = 379 (referred to as XMM-XXL)
- We take all the BH IDs of XMM-XXL (m, \dot{m}, Γ_x)

- Mock L_X , L_{UV} values depend on the BH ID card (m, \dot{m}, Γ_x)
- We build a sample of radiatively-efficient BL AGN
 - Starting from 1787 BL AGN in XMM-XXL (Liu+16, Menzel+16)
 - Minimizing contamination from <u>extinction, X-ray absorption, X-ray</u> reflection
 - N = 379 (referred to as XMM-XXL)
- We take all the BH IDs of XMM-XXL (m, \dot{m}, Γ_x)
- Mock $L_X L_{UV}$ for every μ , f_{max}

Match in normalization, slope and scatter

Outline

- The smoking gun: the $L_X L_{UV}$
- The disk-corona model

• The methodology: an **observational test**

• Results & Conclusions

Results: $L_X - L_{UV}$ normalization

Results: $L_X - L_{UV}$ normalization

Results: $L_X - L_{UV}$ normalization

Results: $L_X - L_{UV}$ slope

Results: a complete picture

 $logL_X = \hat{\alpha} + \hat{\beta} \ logL_{UV}$

Results: the role of BH spin

Flux-limited samples are biased in detecting high-spin sources preferentially! (Brenneman+11; Vasudevan+16; Baronchelli+18; Reynolds19)

Conclusions

- The gap between simulations and observations needs to be reduced
 - ---- Simplified but motivated analytic prescriptions are still a powerful tool
- Disk-corona models should be tested against the observed $L_X L_{UV}$ (and others..)
 - \longrightarrow We modeled the observed sample sources (m, \dot{m}, Γ_x) one by one
 - \longrightarrow Match in normalization, slope and scatter of the $L_X L_{UV}$
- Why is the slope of the $L_X L_{UV} < 1$?
 - Our model can explain it in terms of modified accretion prescriptions
- Is the observed $L_X L_{UV}$ recovered?
 - → In a spin=0 case, models that get the slope right show too weak coronae
 - More realistic spin distributions can relax the tension

