Radiative Transfer Modelling

Manolis Xilouris Institute of Astronomy \& Astrophysics National Observatory of Athens

Absorption coefficient and optical depth

- Consider radiation shining through a layer of material. The intensity of light is found experimentally to decrease by an amount dl_{λ} where $\mathrm{dI}_{\lambda}=-\alpha_{\lambda}{ }_{\lambda} \mathrm{ds}$. Here, ds is a length and α_{λ} is the absorption coefficient [$\left.\mathrm{cm}^{-1}\right]$. The photon mean free path, l, is inversely proportional to α_{λ}.

ds
- Two physical processes contribute to light attenuation: (i) absorption where the photons are destroyed and the energy gets thermalized and (ii) scattering where the photon is shifted in direction and removed from the solid angle under consideration.
- The radiation sees a combination of α_{λ} and ds over some path length L, given by a dimensional quantity, the optical depth:

$$
\tau_{\lambda}=\int_{0}^{L} a_{\lambda} d s
$$

Importance of optical depth

We can write the change in intensity over a path length as $d I_{\lambda}=-I_{\lambda} d \tau_{\lambda}$. This can be directly integrated and give the extinction law:

$$
I_{\lambda}\left(\tau_{\lambda}\right)=I_{\lambda}(0) e^{-\tau_{\lambda}}
$$

- An optical depth of $\tau_{\lambda}=0$ corresponds to no reduction in intensity.
- An optical depth of $\tau_{\lambda}=1$ corresponds to a reduction in intensity by a factor of $\mathrm{e}=2.7$.
This defines the "optically thin" - "optically thick" limit.
- For large optical depths $\tau_{\lambda}>\ngtr$ negligible intensity reaches the observer.

Emission coefficient and source function

- We can also treat emission processes in the same way as absorption by defining an emission coefficient, ε_{λ} [erg/s/cm³/str/cm] :

$$
d I_{\lambda}=\varepsilon_{\lambda} d s
$$

- Physical processes that contribute to ε_{λ} are (i) real emission - the creation of photons and (ii) scattering of photons to the direction being considered.
- The ratio of emission to absorption is called the source function.

$$
S_{\lambda}=\varepsilon_{\lambda} / \alpha_{\lambda}
$$

Radiative Transfer Equation

- We can now incorporate the effects of emission and absorption into a single equation giving the variation of the intensity along the line of sight. The combined expression is:

$$
d I_{\lambda}=-\alpha_{\lambda} I_{\lambda} d s+\varepsilon_{\lambda} d s
$$

or, in terms of the optical depth and the source function the equation becomes:

$$
\frac{d I_{\lambda}}{d \tau_{\lambda}}=-I_{\lambda}+S_{\lambda}
$$

- Once α_{λ} and ε_{λ} are known it is relatively easy to solve the radiative transfer equation. When scattering though is present, solution of the radiative transfer equation is more difficult.

Monte Carlo - The method

- Process with 3 outcomes: Outcome A with probability 0.2

Outcome B with probability 0.3 Outcome C with probability 0.5

We select a large number N of random numbers r uniformly distributed in the interval $[0,1)$. Approximately, 0.2 N will fall in the interval $[0,0.2), 0.3 \mathrm{~N}$ in the interval $[0.2,0.5$) and 0.5 N in the interval $[0.5,1)$. The value of a random number r uniquely determines one of the three outcomes.

- More generally:

If $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{n}}$ are n independent events with probabilities $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}$ and $p_{1}+p_{2}+\ldots+p_{n}=1$ then a random number r with

$$
p_{1}+p_{2}+\ldots+p_{i-1} \leq r<p_{1}+p_{2}+\ldots+p_{i}
$$

determines event E_{i}

- F甲p(c凶indahtuous distributions: $\quad x(a \leq x<b)$

Monte Carlo - Procedure

Step 1: Consider a photon that was emitted at position $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$.
Step 2: To select a random direction (θ, φ), pick a random number r and $\operatorname{set} \varphi=2 \pi r$ and another random number r and set $\cos \theta=2 r-1$.
Step 3: To find a step s that a photon makes before an event (scattering or absorption) occurs, pick a random number r and use the probability density $p(\xi)=(1 / l) e^{-\xi / l} \quad$ where l is the mean free path of the medium in equation $\int_{a}^{s} p(\xi) d \xi=r$

Step 4: The position of the event in space is at (x, y, z), where:

$$
\begin{aligned}
& x=x_{0}+s \sin \theta \cos \varphi \\
& y=y_{0}+s \sin \theta \sin \varphi \\
& z=z_{0}+s \cos \theta
\end{aligned}
$$

Step 5: To determine the kind of event occurred, pick a random number r. If $r<\omega$ (the albedo) the event was a scattering (go to Step 6), else, it was an absorption (record the energy absorbed and go to Step1).

Monte Carlo - Procedure

Step 6: Determine the new direction (Θ, Φ), where Θ is the angle between the old and the new direction (to be determined from the Henyey-Greenstein phase function *) and $\Phi=2 \pi r$.
Step 7: Convert (Θ, Φ) into (θ, φ) and go to Step 3.

Continue the loop described above until the photon is either absorbed or escapes from the absorbing medium.

$$
{ }^{*} p\left(\hat{n}^{\prime}, \hat{n}\right)=\frac{1-g^{2}}{\left(1+g^{2}-2 g \hat{n}^{\prime} \cdot \hat{n}\right)^{3 / 2}}
$$

Henyey \& Greenstein, 1941, ApJ, 93, 70

Scattered intensities - The method

$$
\begin{aligned}
& I=I_{0}+I_{l}+I_{2}+\ldots . \quad \text { Scattered intensities } \\
& I_{0}=\sum_{\text {allus }} \eta(s) \Delta s e^{-\tau(s)} \quad \text { The method } \\
& I_{l}=\omega \sum_{\text {allus }}\left[\kappa(s) \sum_{\text {all }} I_{0}\left(\hat{n}^{\prime}\right) p\left(\hat{n}^{\prime}, \hat{n}\right)(\Delta \Omega / 4 \pi) \Delta s\right] e^{-\tau(s)} \\
& p\left(\hat{n}^{\prime}, \hat{n}\right)=\frac{1-g^{2}}{\left(1+g^{2}-2 g \hat{n}^{\prime} \cdot \hat{n}\right)^{3 / 2}} \\
& \text { Henvey \& Greensten, 1941, App, ,33,70 } \\
& \omega_{v} \approx 0.6 \\
& g_{V} \approx 0.5
\end{aligned}
$$

[^0]
Scattered Intensities - Approximation

$$
\begin{aligned}
& \left.I=I_{0}+I_{1}+I_{2}+\ldots=I_{0}\left(1+\frac{I_{1}}{I_{0}}+\frac{I_{2}}{I_{0}}+\ldots\right)=I_{0}\left(1+\frac{I_{1}}{I_{0}}+\frac{I_{1}}{I_{0}} \frac{I_{2}}{I_{1}}+\ldots\right)^{\frac{I_{n}}{I_{n-1}} \approx \frac{I_{1}}{I_{0}}} \begin{array}{r}
I_{0}\left(\frac{1}{1-I_{1} I_{0}}\right) \\
\text { Kylafis \& Bahcall, 1987, ApJ, 317, 637 }
\end{array} \quad 1+\frac{I_{1}}{I_{0}}+\left(\frac{I_{1}}{I_{0}}\right)^{2}+\ldots\right)=
\end{aligned}
$$

Verification

1. The scattering is essentially forward

$$
p\left(\hat{n}^{\prime}, \hat{n}\right)=\frac{1-g^{2}}{\left(1+g^{2}-2 g \hat{n}^{\prime} \cdot \hat{n}\right)^{3 / 2}}
$$

Henyey \& Greenstein, 1941, ApJ, 93, 70

Fig. 3.-Polar diagram of the phase function of equation (2), for $\gamma=\mathrm{r}$. The more elongated curve is for $g=+\frac{3}{3}$; the other, for $g=+\frac{1}{3}$. The radiation is incident on the particle from the left, as shown by the arrow.

Approximation

$$
\begin{aligned}
& I=I_{0}+I_{1}+I_{2}+\ldots=I_{0}\left(1+\frac{I_{1}}{I_{0}}+\frac{I_{2}}{I_{0}}+\ldots\right)=I_{0}\left(1+\frac{I_{1}}{I_{0}}+\frac{I_{1}}{I_{0}} \frac{I_{2}}{I_{1}}+\ldots\right)_{n \geq 2}^{I_{n-1}} \frac{I_{1}}{I_{0}} \\
& I_{0}\left(\frac{1}{1-I_{1} I_{0}}\right)\left(1+\frac{I_{1}}{I_{0}}+\left(\frac{I_{1}}{I_{0}}\right)^{2}+\ldots\right)= \\
& \quad \text { Kylafis \& Bahcall, 1987, ApJ, 317, 637 }
\end{aligned}
$$

Verification

Approximation

$$
\begin{aligned}
& \left.I=I_{0}+I_{1}+I_{2}+\ldots=I_{0}\left(1+\frac{I_{1}}{I_{0}}+\frac{I_{2}}{I_{0}}+\ldots\right)=I_{0}\left(1+\frac{I_{1}}{I_{0}}+\frac{I_{1}}{I_{0}} \frac{I_{2}}{I_{1}}+\ldots\right)^{\frac{I_{n}}{I_{n-1}} \approx \frac{I_{1}}{I_{0}}} \begin{array}{l}
I_{0}\left(\frac{1}{1-I_{1} I_{0}}\right) \\
\quad \text { Kylafis \& Bahcall, 1987, ApJ, 317, 637 }
\end{array} \quad l+\frac{I_{1}}{I_{0}}+\left(\frac{I_{1}}{I_{0}}\right)^{2}+\ldots\right)=
\end{aligned}
$$

Verification

2. Computation of the I_{2} term

$$
\begin{aligned}
& \tau^{e}(V)=100 \\
& \theta=90^{\mathcal{G}} \\
& h_{s}=3 \mathrm{kpc} \\
& h_{d}=3 \mathrm{kpc} \\
& z_{s}=0.3 \mathrm{kpc} \\
& z_{d}=0.15 \mathrm{kpc}
\end{aligned}
$$

Model application in spiral galaxies
I-band observations

NGC 4013

IC 2531
,

UGC 1082

NGC 5529

NGC 590\%

UGC 2048

NGC 891

NGC 4013

IC 2531

UGC 1082

NGC 5529

NGC 5907

Code Comparison in galactic environments

DIRTY - M.C.
SKIRT - M.C.
TRADING -M.C.
CRETE - S.I.

Models with different inclination angle

SED of an accretion disk

Clumpy geometry of a torus

Fig. 5a
Modeling the SED of NGC 1068

[^0]: Weingartner \& Draine, 2001, ApJ, 548, 296

