

THE PHYSICS OF COSMIC ACCELERATION

Dr. Spyros Basilakos

Research Center for Astronomy & Applied Mathematics ACADEMY of ATHENS

3rd Advanced Astronomy School, Athens September 20-22

THE CURRENT COSMOLOGICAL STATUS

We live in a very exciting period for the advancement of our knowledge for the Cosmos

 Current observational data strongly support a flat and accelerating Universe with H_o~72Km/sec/Mpc and T_o~13.7 Gyr.

• The mystery of dark energy poses a challenge of such magnitude that, as stated by the Dark Energy Task Force (DETF –advising DOE, NASA and NSF), "Nothing short of a revolution in our understanding of fundamental physics will be required to achieve a full understanding of the cosmic acceleration" (Albrecht et al. 2006).

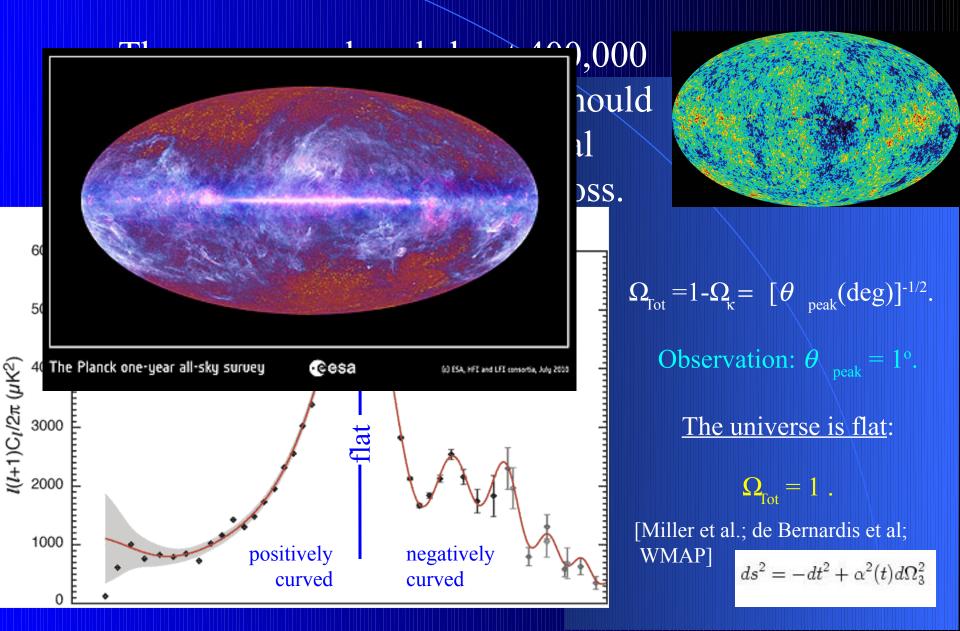
Observations in Cosmology

- Hubble diagram (SNIa) $\rightarrow \Omega_{\rm m} + \Omega_{\Lambda}$
- Temperature fluctuations of the CMB \rightarrow spatial geometry Ω_{κ}
- Large-Scale Structure $\rightarrow \Omega_m$ (completely independent from the dark energy)
- Extragalactic sources (galaxies, AGNs, GRBs, LBGs etc) at large redshifts $\rightarrow \Omega + \Omega$.

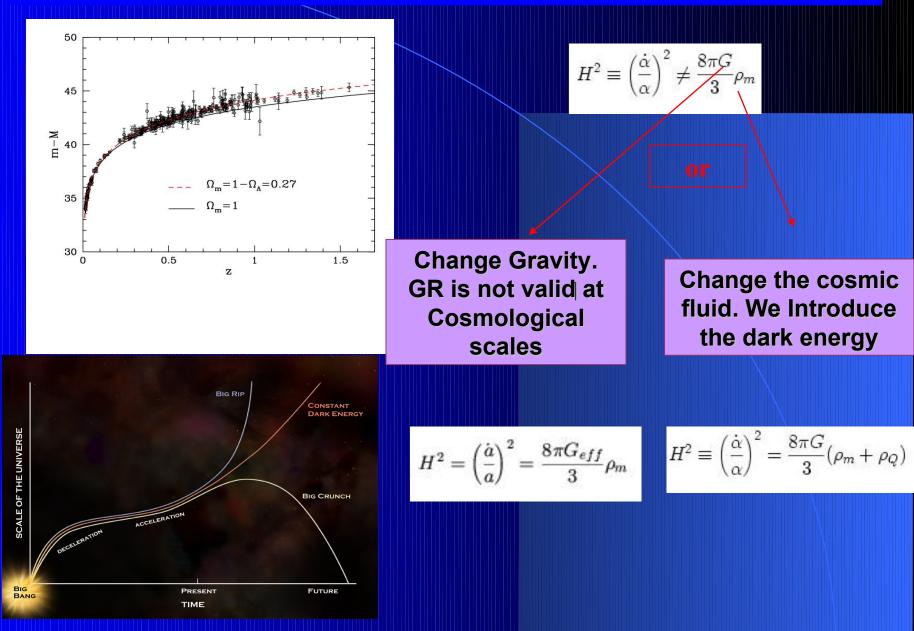
THE OUTLINE OF THE PRESENT TALK

- Introduction
- Observational evidence of the cosmic acceleration
- Gravity versus 'Anti-gravity"
- Dark Energy Problems and Prospects
- The dynamics of the Universe
- How to constrain the cosmological parameters?
- The ΛCDM model Puzzles for Λ-cosmology
- Solving the Problems
- Dark energy as a new field
- Dark energy as a modification of gravity
- Testing Einstein's gravity theory
- The fate of the Universe

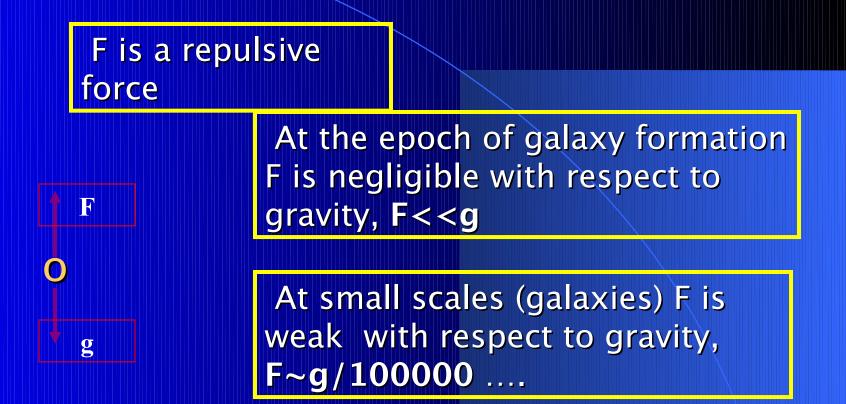
How we work in Physical Cosmology?



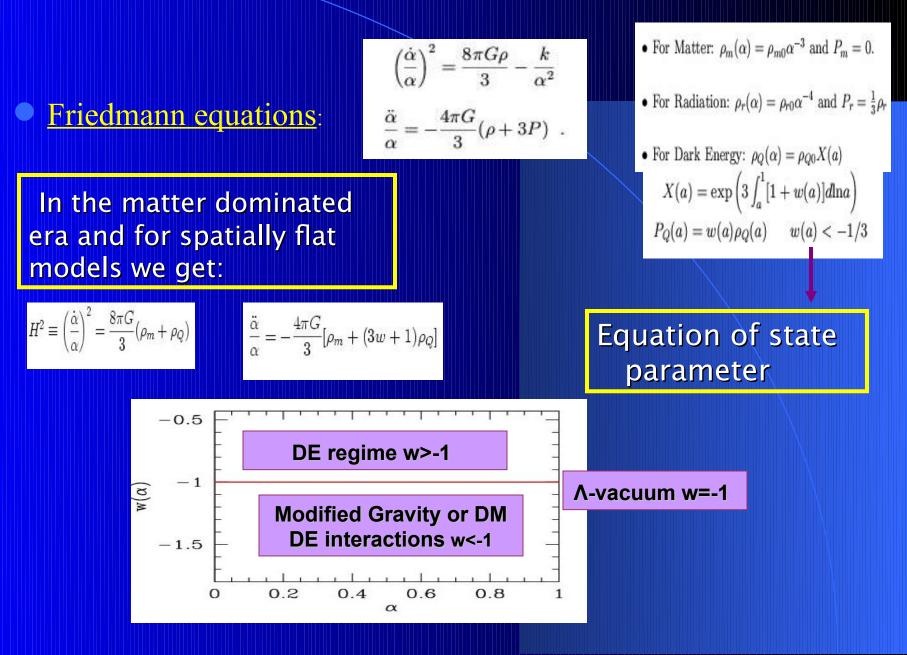
Theory + Observations = Laws of Cosmos



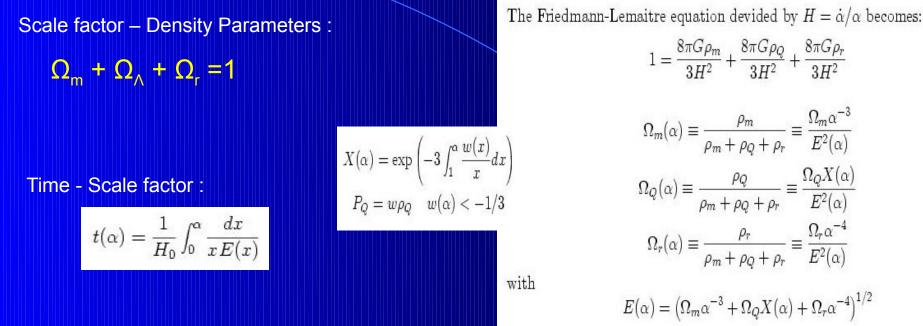
THE BASIC EQUATION:


CMB temperature anisotropies provide a standard ruler.

The evidence of the cosmic acceleration



Gravity versus "Anti-gravity"



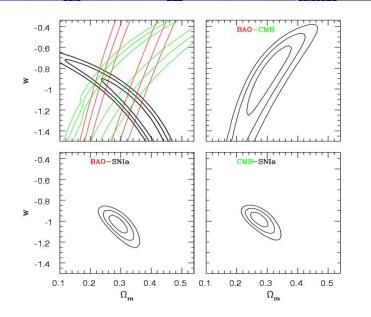
...but at cosmological scales F becomes strong. Indeed prior to the present time F~5g and it yields the cosmic acceleration

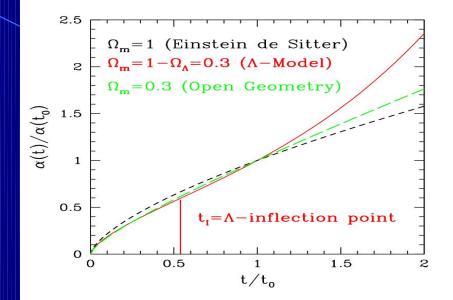
THE DYNAMICS OF THE UNIVERSE

Measuring the Expansion of the Universe

Luminosity Distance - Scale factor :

 $D_{\rm L}(\alpha) = \frac{c}{H_0 \alpha} \int_{\alpha}^{1} \frac{dy}{x^2 E(x)}$


During the matter epoch p_r=0


At the inflection point: $\ddot{\alpha_I} = 0$ For $\alpha > \alpha_1$ we reach acceleration

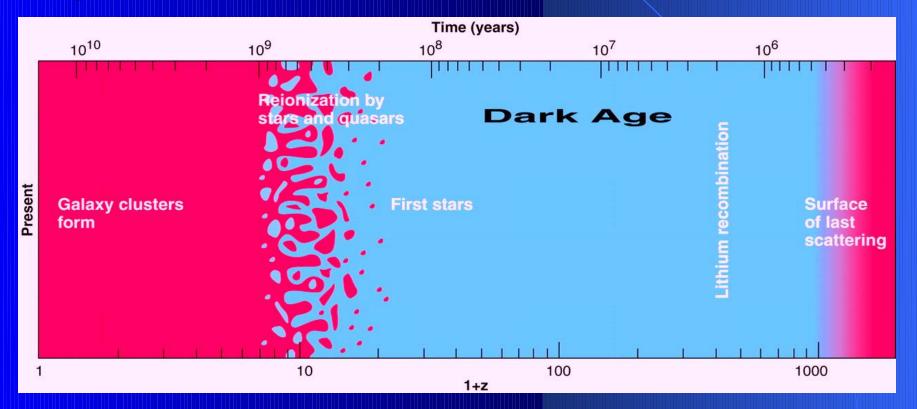
For α=1 we have the present epoch

Note that for w=-1 or X(α)=1 we get the usual Λ cosmology. In this case: $\Omega_m = 1 - \Omega_\Lambda = 0.27$ $t_1 = 0.51t_0$ $\alpha_1 = 0.57$

Cosmological Results

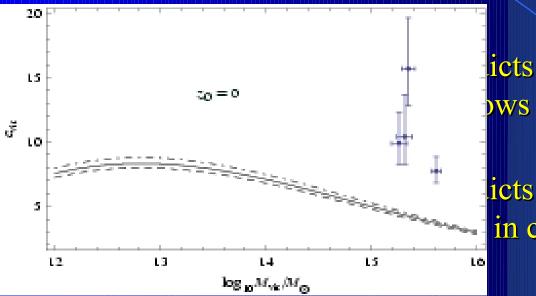
SNIa Likelihoods:

Cosmo-statistics A joint likelihood SNIa+BAO+CMB


$$\chi^2 = \sum_{i=1}^{N} \left[\frac{\mu^{\text{th}}(a_i, \Omega_m, w) - \mu^{\text{obs}}(a_i)}{\sigma_i} \right]^2$$

Where μ =m-M. We use the 'constitution' sample of 393 SNIa of Hicken et al. (2009) 0.1<z<1.55

Best fit results within 1σ: 0.26<Ωm<0.30 and -1.1<w(z=0)<-0.9


The concordance ΛCDM model: w(z)=-1

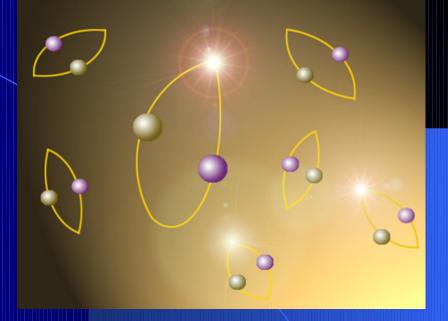
- It is a simple model (it contains only one free parameter Ω_m)
- It fits accurately the current cosmological data
- It predicts nicely the cosmic history

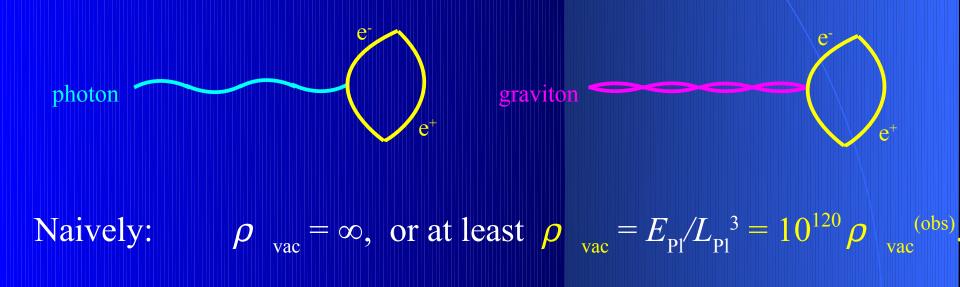
...However: Puzzles for the Λ-Cosmology

Basilakos, Sanchez & Perivolaropoulos 2009 Phys. Rev. D., 80, 3530

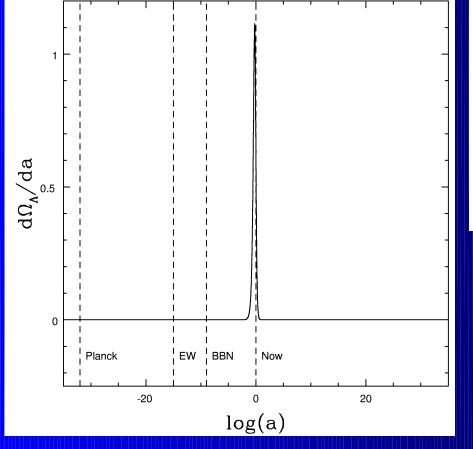
<u>Emptiness</u>

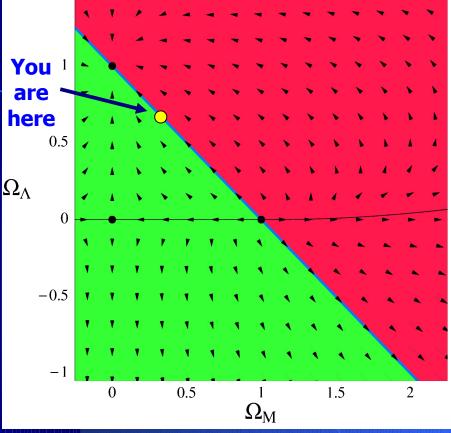
icts significantly smaller ows than what


ar

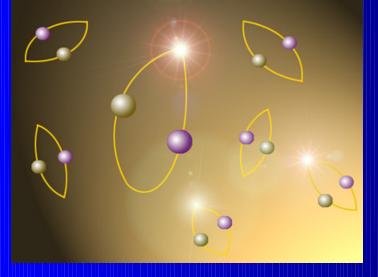

icts shallow low in contrast to

Profiles of Galaxy Haloes: A predicts halo mass profiles with cuspy cores while lensing and dynamical observations indicate a central core of constant density.


 <u>Sizable Population of Disk Galaxies</u>: A predicts a smaller fraction of disk galaxies due to recent mergers expected to disrupt cold rotationally supported disks. Theoretical Problem One: Why is the vacuum energy so small?


We know that virtual particles couple to photons (e.g. Lamb shift); why not to gravity?

Theoretical Problem Two: Why is the vacuum energy important *now*?



We seem to be living in a special time. Copernicus would not be pleased.

Could we just be lucky?

The Gravitational Physics Data Book: Newton's constant: $G = (6.67 \pm 0.01) \ge 10^{-8} \text{ cm}^3 \text{ g}^{-1} \sec^{-1}$

Cosmological constant: Λ = (1.2 ± 0.2) x 10⁻⁵⁵ cm⁻²

If we set h = c = 1, we can write $G = E_{\text{Planck}}^{-2}$ and $\rho_{\text{vac}} = E_{\text{vac}}^{4}$, and $E_{\text{Planck}} = 10^{27} \text{ eV}$, $E_{\text{vac}} = 10^{-3} \text{ eV}$.

Different by 10^{30} .

$E_{\rm vac}$

All we need is a physical theory that predicts this relation!

- VACUUM: A time varying vacuum $\Lambda(t)$ [Ozer & Taha 1987, Peebles & Ratra 1988]
- NEW FIELDS: Quintessence, phantom, Gardassian expansion, Chaplygin gas, tachyons, scalar-tensor and the list goes on!!! (cf. Peebles & Ratra 2003, Caldwell et al. 1998, Chiba 1999, Sen 2002, Freese & Lewis 2002, Multamaki et al. 2004)
- NEW THEORY OF GRAVITY: modification of gravity or interacting dark matter (Linder 2004, Chimento & Feinstein 2004, Perez-Lorenzana et al. 2008, Caldwell & Kamionkowski 2009, Lima et al. 2008, Basilakos & Plionis 2009 and references therein)
- KNOWN PHYSICS: Magnetic fields, local void contributions (I. Contopoulos & S. Basilakos 2007, Alexander et al. 2008, Caldwell & Stebbins 2008)

Dark Energy as a New field...?

Introduction of an extra negative-pressure cosmic fluid

If history of particle physics is any guide, then it seems reasonable to speculate that the DE is due to a new field For cosmology, the simplest field that can yield a cosmic acceleration is a homogeneous scalar field q=q(t)

Such a field is referred to as ''quintessence'' to help distinguish it from other fields or other forms of dark energy

New field...?

The formal description of quintessence begins with the action

$$S = \int d^4x \sqrt{-g} \left(\frac{R}{16\pi G} + L_\phi \right)$$

$$L_{\phi} = \frac{\dot{\phi}^2}{2} - V(\phi)$$

In this context, the Euler-Langrange equations produce the Friedmann equation and the Klein-Gordon equation

$$\frac{H^2}{H_0^2} = \Omega_m a^{-3} + \Omega_Q \text{exp}\left(3\int_a^1 [1+w(a)]d\text{ln}a\right)$$

$$\ddot{\phi} + 3H(t)\dot{\phi} + \frac{dV}{d\phi} = 0 \qquad w(a)$$

The equivalence between $w(\alpha)$ and V(φ(α)) provides

So far a wide variety of potentials have been proposed

$$\begin{split} \ddot{\phi} + 3H(t)\dot{\phi} + \frac{dV}{d\phi} &= 0 \\ w(a) &= \frac{P_{\phi}}{\rho_{\phi}} = \frac{\dot{\phi}^2}{2} - V(\phi) \\ \dot{\phi}(a) &= \int dt \left[-\frac{\dot{H}}{4\pi G} \right]^{1/2} = \int \frac{da}{\sqrt{aH(a)}} \left[-\frac{1}{4\pi G} \frac{dH}{da} \right]^{1/2} \\ w(a) &= -1 - \frac{2a}{3H} \frac{dH}{da} \\ V(\phi) &= V_0 + \frac{m^2 \phi^2}{2} \\ V(\phi) &= V_0 [1 + \cosh^2(m\phi)] \\ V(\phi) &= V_0 [1 + \cosh^2(m\phi)] \\ V(\phi) &= V_0 [1 + \cos(m\phi)] \end{split}$$

Dark Energy as a modification of gravity?

An alternative approach to cosmic acceleration is to change gravity "geometrical dark energy"

Here we alter general relativity by modifying the Einstein's field equations

The alternative-gravity theories have to satisfy the following criteria:

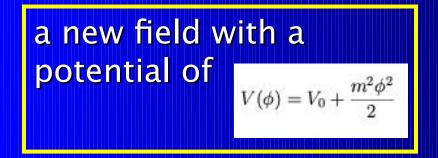
- For systems such as the solar system or galaxies, the alternative gravity must be very close to general relativity
- At cosmological scales we must have g_{MR}<g_{GR} which implies that the cosmic acceleration is due to the weak gravity nature

....modified theory of gravity?

One class of alternative-gravity theories that have received considerable attention are f(R) theories in which the Einstein-Hilbert action is replaced by an action:

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} f(R) + S_{matter}$$

where f(R) is a function whose form defines the gravity theory


> In this framework, the Euler-Lagrange equation yields the Friedmann equation

$$f(R) = R - 2\Lambda \ f(R) = R - m/R^n \ f(R) = R - m(1 - e^{-R/n})$$

$$\begin{split} \frac{H^2}{H_0^2} &= \frac{3\Omega_m a^{-3} + f/H_0^2}{6R'\xi^2} \\ \xi &= 1\frac{9}{2}\frac{R''}{R'}\frac{H_0^2\Omega_m a^{-3}}{(RR''-R')} \end{split}$$

$$w(a) = -1 - \frac{2a}{3H} \frac{dH}{da}$$

The Λ cosmology can be seen either as

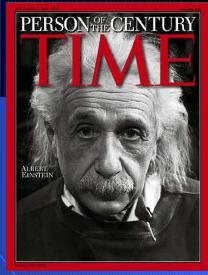
or a modified gravity with $f(R)=R-2\Lambda$

As a general result: with "quintessence" we assume that GR is correct but the Universe contains an exotic new cosmic fluid (field). Alternatively, we can change GR by changing the *Einstein's equations*. Both scenarios provide the same Hubble expansion $H=H(\alpha)$.

Can we decide between the two theories? Using observational data which are based on the distance modulus the answer is NO!!

Tests of Gravity

Locally Einstein's General Relativity


is the standard model of gravitation

$$\eta = 2\frac{a_1 - a_2}{a_1 + a_2} < 4 \times 10^{-13}$$

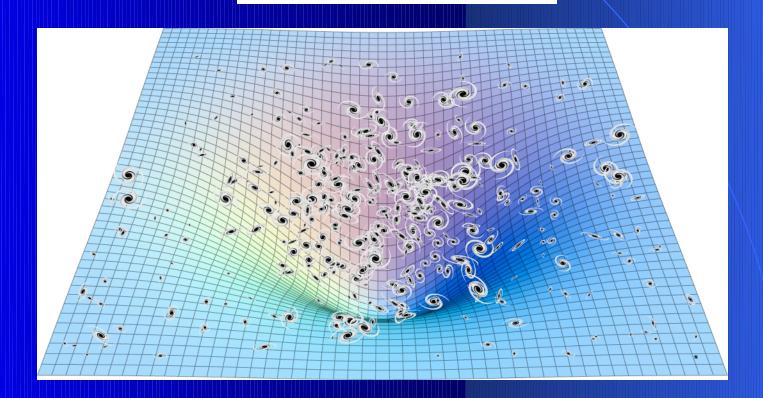
local acceleration of bodies of different composition Eot-Wash: Baessler et al, PRL 83 (1999) 3585

$$\dot{G}/G = (4\pm9) imes 10^{-13}\,/{
m yr}$$

Lunar laser ranging Williams et al, PRL 93 (2004) 261101

$$rac{M_G}{M_I}|_{earth} - rac{M_G}{M_I}|_{moon} = (-1 \pm 1.4) imes 10^{-13}$$

Nordtvedt effect: observations of the acceleration of bodies with different gravitational binding energies tests the Strong Equivalence Principle


Mass definitions:

$$\vec{F} = M_I \vec{a}$$
$$\Phi = -GM_G/r$$

Cosmological Tests of Gravity

The influence of dark energy on the cosmic expansion *slows* the growth of inhomogeneities in the dark matter and baryons.

$$\ddot{\delta}_m + 2H(t)\dot{\delta}_m = 4\pi G\rho_m \delta_m$$

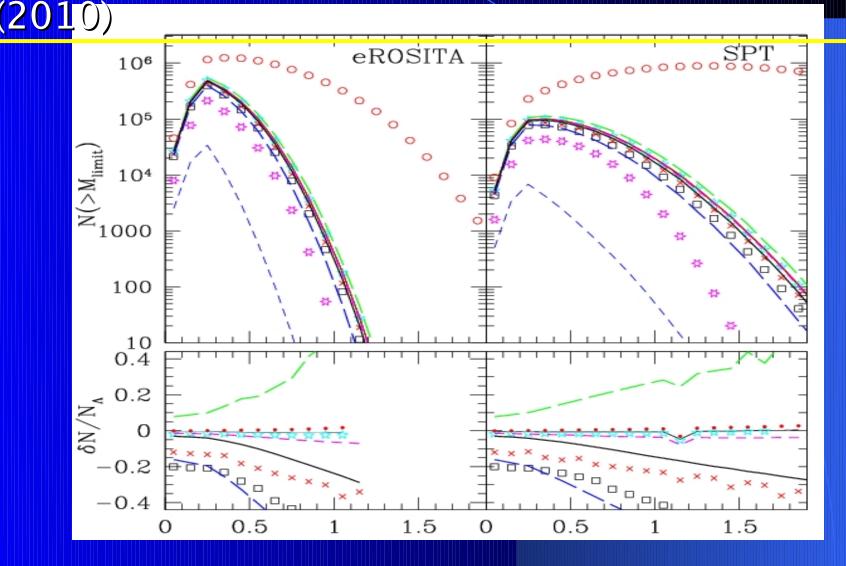
The formation of cosmic structures

The evolution equation of the matter fluctuations

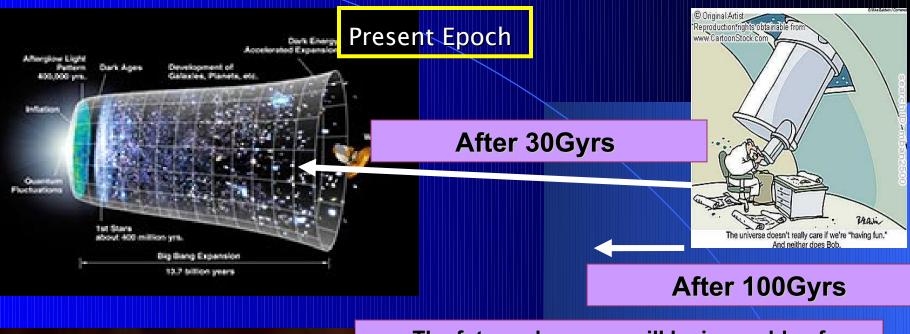
$$\ddot{\delta}_m + 2H(t)\dot{\delta}_m = 4\pi G\rho_m\delta_m$$

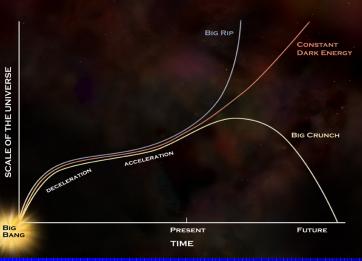
The mass function (Press– Schecther approach) which is the number density of halos n(M,z) with masses in the range (M, M+dM).

> The number counts which is an observable quantity


$$n(M,z)dM = \frac{\bar{\rho}}{M} \frac{d\ln\sigma^{-1}}{dM} f_{\rm PSc}(\sigma) dM$$
$$f_{\rm PSc}(\sigma) = (2/\pi)^{1/2} (\delta_c/\sigma) \exp(-\delta_c^2/2\sigma^2)$$

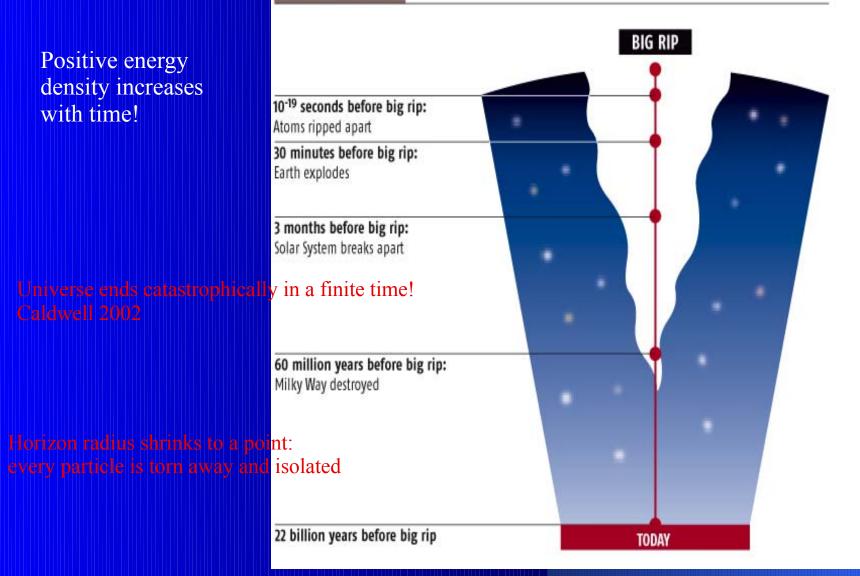
$$\sigma^{2}(M,z) = \frac{\delta_{m}^{2}(z)}{2\pi^{2}} \int_{0}^{\infty} k^{2} P(k) \frac{3(\sin kR - kR \cos kR)}{(kR)^{3}} dk$$


 $\delta_c \sim 1.68$


$$\mathcal{N}(z) = rac{4\pi c}{H(z)} \; r^2(z) \; \int_{M_1}^{M_2} n(M,z) dM$$

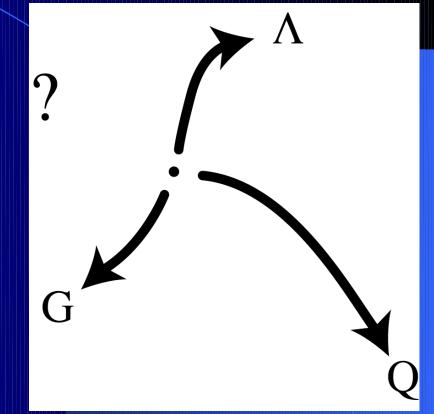
Using the future realistic data (number counts) we can distinguish the majority of Dark Energy models!!! Basilakos, Plionis & Lima, Phys. Rev. D.

The Fate of Cosmos:H(t)~H₀ w(t)~-1 and $\alpha(t)$ ~exp(H₀ t)



In far future, if w(t)<-1 then $\rho_{de} \sim \rho_{de,0} \alpha(t)^{-3(1+w)}$

END OF EVERYTHING



Future research in Cosmology

- The nature of Dark Energy as well as its existence as the sole interpretation of the observed accelerated expansion of the Universe
- Dark Energy and fundamental theory (before Bing-Bang, stringtheory, loop quantum gravity)
- The cosmic coincidence problem -connection between the quantum cosmic regime with the observed Universe
- New observations methods to estimate the cosmological parameters. Can we detect DE? Is w=w(t)? Is $\Lambda=\Lambda(t)$?
- If w<-1, Is GR the correct theory at cosmological scales? or Modified theory of gravity? or Dark Matter-Energy interactions?
- The nature of the dominant form of the Cold Dark Matter
- The statistics of the large scale structure of the Universe at different epochs (clustering)
- Understanding the evolution of galaxies and clusters

Roadmap for Cosmology: New Physics in light of Dark Energy

Artistic view of a universe filled by a turbulent sea of dark energy

Spyros Basilakos RCAAM Academy of Athens

September 2010