Reprocessing AGN radiation by Dust

Manolis Xilouris Institute of Astronomy & Astrophysics National Observatory of Athens

The many faces of AGN :: NOA 24 September 2008

Absorption coefficient and optical depth

• Consider radiation shining through a layer of material. The intensity of light is found experimentally to decrease by an amount dl_∧ where $|$ dl_∧=- α_{λ} l_∧ds. Here, ds is a length and $\alpha_{_{\lambda}}$ is the absorption coefficient [cm⁻¹]. The photon mean free path, l , is inversely proportional to $\alpha_{_{\! \lambda}}.$

• Two physical processes contribute to light attenuation: (i) absorption where the photons are destroyed and the energy gets thermalized and (ii) scattering where the photon is shifted in direction and removed from the solid angle under consideration.

 \bullet The radiation sees a combination of a_{λ} and ds over some path length L, given by a dimensional quantity, the optical depth:

$$
\tau_{\lambda} = \int_{0}^{L} a_{\lambda} ds
$$

Importance of optical depth

We can write the change in intensity over a path length as $\;\; dI_{\scriptscriptstyle \cal A}= -I_{\scriptscriptstyle \cal A} d\,\tau_{\scriptscriptstyle \cal A}$. This can be directly integrated and give the extinction law:

$$
I_{\lambda}(\tau_{\lambda})=I_{\lambda}(0)e^{-\tau_{\lambda}}
$$

- An optical depth of $\;\; \tau_{_{\lambda}} = 0\;\;$ corresponds to no reduction in intensity.
- An optical depth of $\,\tau_{_{\scriptscriptstyle \cal A}} = I\,$ corresponds to a reduction in intensity by a factor of e=2.7.

This defines the "optically thin" – "optically thick" limit.

• For large optical depths $\mathop{\tau}\nolimits_{\lambda} >> I$ negligible intensity reaches the observer.

Emission coefficient and source function

• We can also treat emission processes in the same way as absorption by defining an emission coefficient, ε_λ [erg/s/cm³/str/cm] :

$$
dI_{\lambda} = \varepsilon_{\lambda} ds
$$

 \bullet Physical processes that contribute to $\bm{\epsilon}_{\lambda}$ are (i) real emission – the creation of photons and (ii) scattering of photons to the direction being considered.

• The ratio of emission to absorption is called the source function.

$$
S_{\lambda} = \varepsilon_{\lambda} / \alpha_{\lambda}
$$

Radiative Transfer Equation

• We can now incorporate the effects of emission and absorption into a single equation giving the variation of the intensity along the line of sight. The combined expression is:

$$
dI_{\lambda} = -\alpha_{\lambda} I_{\lambda} ds + \varepsilon_{\lambda} ds
$$

or, in terms of the optical depth and the source function the equation becomes:

$$
\frac{dI_{\lambda}}{d\tau_{\lambda}} = -I_{\lambda} + S_{\lambda}
$$

• Once $\alpha_{_\lambda}$ and $\varepsilon_{_\lambda}$ are known it is relatively easy to solve the radiative transfer equation. When scattering though is present, solution of the radiative transfer equation is more difficult.

Monte Carlo – The method

We select a **large** number N of **random numbers r** uniformly distributed in the interval [0, 1). Approximately, 0.2N will fall in the interval [0, 0.2), 0.3N in the interval [0.2, 0.5) and 0.5N in the interval [0.5, 1). **The value of a random number r uniquely determines one of the three outcomes**.

• More generally: If $\mathsf{E}_1, \mathsf{E}_2, ..., \mathsf{E}_\mathsf{n}$ are n independent events with probabilities $\mathsf{p}_1, \mathsf{p}_2, ..., \mathsf{p}_\mathsf{n}$ and p_1 + p_2 +...+ p_n =1 then a random number r with

 $p_1+p_2+...+p_{i-1} \le r < p_1+p_2+...+p_i$

determines event Ei

• For continuous distributions:

If $p(x)dx$ is the probability for event $x(a \le x < b)$ to occur then

a

$$
\int\limits_{0}^{x} p(\xi) d\xi = r
$$

determines event $\boldsymbol{\mathcal{X}}$ uniquely.

Monte Carlo – Procedure

- Step 1: Consider a photon that was emitted at position (x $_{\rm 0}$, y $_{\rm 0}$, z $_{\rm 0}$).
- Step 2: To select a random direction (θ, φ), pick a random number r and set φ=2πr and another random number r and set cosθ=2r-1.
- Step 3: To find a step s that a photon makes before an event (scattering or absorption) occurs, pick a random number r and use the probability density

 $p(\xi) = (1/l)e^{-\xi/l}$ ξ) = (1/l)e^{- ξ} ∫ = *s ap (* ξ *) d*ξ *r* where $l\,$ is the mean free path of the medium in equation *l*

Step 4: The position of the event in space is at (x, y, z), where:

x= x₀+ s sinθ cosφ y= y_o+ s sinθ sinφ

z= z₀+ s cosθ

Step 5: To determine the kind of event occurred, pick a random number r. If r<ω (the albedo) the event was a scattering (go to Step 6), else, it was an absorption (record the energy absorbed and go to Step1).

Monte Carlo – Procedure

- Step 6: Determine the new direction (Θ, Φ), where Θ is the angle between the old and the new direction (to be determined from the Henyey-Greenstein phase function *) and Φ=2 πr.
- Step 7: Convert (Θ, Φ) into (θ, φ) and go to Step 3.

Continue the loop described above until the photon is either absorbed or escapes from the absorbing medium.

*
$$
p(\hat{n}', \hat{n}) = \frac{1 - g^2}{(1 + g^2 - 2g\hat{n}' \cdot \hat{n})^{3/2}}
$$

Henyey & Greenstein, 1941, ApJ, **93**, 70

Scattered intensities - The method

 $I = I_0 + I_1 + I_2 + ...$

$$
I = I_0 + I_1 + I_2 + \dots
$$

\n
$$
I_0 = \sum_{all \Delta s} \eta(s) \Delta s e^{-\tau(s)}
$$

\n
$$
I_1 = \omega \sum_{all \Delta s} \left[\kappa(s) \sum_{all \hat{n}} I_0(\hat{n}') p(\hat{n}', \hat{n}) (\Delta \Omega / 4\pi) \Delta s \right] e^{-\tau(s)}
$$

\n
$$
p(\hat{n}', \hat{n}) = \frac{1 - g^2}{(1 + g^2 - 2g \hat{n}' \cdot \hat{n})^{3/2}} \qquad \tau(s)
$$

\nHenyey & Greenstein, 1941, Apd, 93, 70
\n
$$
\omega_v \approx 0.6 \qquad \underbrace{\sum_{l=1}^{3} \tau(l) \sum_{i=1}^{3} \tau(l) \sum_{l=1}^{3} \gamma(l) \sum_{l=1}^{3}
$$

Weingartner & Draine, 2001, ApJ, **548**, 296

n ≥ *2* Kylafis & Bahcall, 1987, ApJ, **317**, 637 **Scattered Intensities - Approximation** $I = I_0 + I_1 + I_2 + ... = I_0 \left(I + \frac{I_1}{I_0} + \frac{I_2}{I_0} + ... \right) = I_0 \left(I + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \frac{I_2}{I_1} + ... \right) = \frac{I_{n-1} - I_0}{n \ge 2} I_0 \left(I + \frac{I_1}{I_0} + \left(\frac{I_1}{I_0} \right)^2 + ... \right) =$ $I_o\!\!\left(\frac{I}{I\!-\!I_{{}_I}\!\!\neq\!I_{{}_0}}\right)$ *1nII*≈ −

Verification

1. The scattering is essentially forward

$$
p(\hat{n}', \hat{n}) = \frac{1 - g^2}{(1 + g^2 - 2g\hat{n}' \cdot \hat{n})^{3/2}}
$$

Henyey & Greenstein, 1941, ApJ, **93**, 70

FIG. 3. Polar diagram of the phase function of equation (2), for $\gamma =$ 1. The more elongated curve is for $g = +\frac{2}{3}$; the other, for $g = +\frac{1}{3}$. The radiation is incident on the particle from the left, as shown by the arrow.

n ≥ *2* Kylafis & Bahcall, 1987, ApJ, **317**, 637 **Approximation** $I = I_0 + I_1 + I_2 + ... = I_0 \left(I + \frac{I_1}{I_0} + \frac{I_2}{I_0} + ... \right) = I_0 \left(I + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \frac{I_2}{I_1} + ... \right) = \frac{I_{n-1} - I_0}{n \ge 2} I_0 \left(I + \frac{I_1}{I_0} + \left(\frac{I_1}{I_0} \right)^2 + ... \right) =$ $I_o\!\!\left(\frac{I}{I\!-\!I_{{}_I}\!\!\neq\!I_{{}_0}}\right)$ $\frac{\displaystyle I_n}{\displaystyle I_n}\approx\frac{\displaystyle I_n}{\displaystyle I_n}$ −

Verification

 1.5

n ≥ *2* Kylafis & Bahcall, 1987, ApJ, **317**, 637 **Approximation** $I = I_0 + I_1 + I_2 + ... = I_0 \left(I + \frac{I_1}{I_0} + \frac{I_2}{I_0} + ... \right) = I_0 \left(I + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \frac{I_2}{I_1} + ... \right) = \frac{I_{n-1} - I_0}{n \ge 2} I_0 \left(I + \frac{I_1}{I_0} + \left(\frac{I_1}{I_0} \right)^2 + ... \right) =$ $I_o\!\!\left(\frac{I}{I\!-\!I_{{}_I}\!\!\neq\!I_{{}_0}}\right)$ *1 n 1 n I I II*≈ −

Verification

2. Computation of the I₂ term

$$
\tau^{e}(V) = 100
$$

\n
$$
\theta = 90^{\circ}
$$

\n
$$
h_{s} = 3kpc
$$

\n
$$
h_{d} = 3kpc
$$

\n
$$
z_{s} = 0.3kpc
$$

\n
$$
z_{d} = 0.15kpc
$$

Model application in spiral galaxies

Xilouris et al, 1999, A&A, 344, 868

Code Comparison in galactic environments

SED of an accretion disk

Models with different inclination angle

Modeling the SED of NGC 1068

