Reprocessing AGN radiation by Dust

Manolis Xilouris Institute of Astronomy & Astrophysics National Observatory of Athens

The many faces of AGN :: NOA 24 September 2008

Absorption coefficient and optical depth

• Consider radiation shining through a layer of material. The intensity of light is found experimentally to decrease by an amount dI_{λ} where $dI_{\lambda}=-\alpha_{\lambda}I_{\lambda}ds$. Here, ds is a length and α_{λ} is the absorption coefficient [cm⁻¹]. The photon mean free path, l, is inversely proportional to α_{λ} .

• Two physical processes contribute to light attenuation: (i) absorption where the photons are destroyed and the energy gets thermalized and (ii) scattering where the photon is shifted in direction and removed from the solid angle under consideration.

• The radiation sees a combination of α_{λ} and ds over some path length L, given by a dimensional quantity, the optical depth:

$$\tau_{\lambda} = \int_{0}^{L} a_{\lambda} ds$$

Importance of optical depth

We can write the change in intensity over a path length as $dI_{\lambda} = -I_{\lambda}d\tau_{\lambda}$. This can be directly integrated and give the extinction law:

$$I_{\lambda}(\tau_{\lambda}) = I_{\lambda}(0)e^{-\tau_{\lambda}}$$

- An optical depth of $\tau_{\lambda} = 0$ corresponds to no reduction in intensity.
- An optical depth of $\tau_{\lambda} = 1$ corresponds to a reduction in intensity by a factor of e=2.7.

This defines the "optically thin" – "optically thick" limit.

• For large optical depths $\tau_{\lambda} >> 1$ negligible intensity reaches the observer.

Emission coefficient and source function

• We can also treat emission processes in the same way as absorption by defining an emission coefficient, ϵ_{λ} [erg/s/cm³/str/cm] :

$$dI_{\lambda} = \varepsilon_{\lambda} ds$$

• Physical processes that contribute to ε_{λ} are (i) real emission – the creation of photons and (ii) scattering of photons to the direction being considered.

• The ratio of emission to absorption is called the source function.

$$S_{\lambda} = \varepsilon_{\lambda} / \alpha_{\lambda}$$

Radiative Transfer Equation

• We can now incorporate the effects of emission and absorption into a single equation giving the variation of the intensity along the line of sight. The combined expression is:

$$dI_{\lambda} = -\alpha_{\lambda}I_{\lambda}ds + \varepsilon_{\lambda}ds$$

or, in terms of the optical depth and the source function the equation becomes:

$$\frac{dI_{\lambda}}{d\tau_{\lambda}} = -I_{\lambda} + S_{\lambda}$$

• Once α_{λ} and ϵ_{λ} are known it is relatively easy to solve the radiative transfer equation. When scattering though is present, solution of the radiative transfer equation is more difficult.

Monte Carlo – The method

We select a **large** number N of **random numbers r** uniformly distributed in the interval [0, 1). Approximately, 0.2N will fall in the interval [0, 0.2), 0.3N in the interval [0.2, 0.5) and 0.5N in the interval [0.5, 1). **The value of a random number r uniquely determines one of the three outcomes**.

• More generally: If $E_1, E_2, ..., E_n$ are n independent events with probabilities $p_1, p_2, ..., p_n$ and $p_1 + p_2 + ... + p_n = 1$ then a random number r with

 $p_1 + p_2 + \dots + p_{i-1} \le r < p_1 + p_2 + \dots + p_i$

determines event E_i

• For continuous distributions:

If p(x)dx is the probability for event $x(a \le x < b)$ to occur then

$$\int_{a}^{x} p(\xi) d\xi = r$$

determines event X uniquely.

Monte Carlo – Procedure

- Step 1: Consider a photon that was emitted at position (x_0, y_0, z_0) .
- Step 2: To select a random direction (θ , ϕ), pick a random number r and set ϕ =2 π r and another random number r and set cos θ =2r-1.
- Step 3: To find a step s that a photon makes before an event (scattering or absorption) occurs, pick a random number r and use the probability density

 $p(\xi) = (\frac{1}{l})e^{-\xi/l}$ where l is the mean free path of the medium in equation $\int_{a}^{s} p(\xi)d\xi = r$

Step 4: The position of the event in space is at (x, y, z), where:

 $x = x_0 + s \sin\theta \cos\phi$

 $z=z_0+s\cos\theta$

Step 5: To determine the kind of event occurred, pick a random number r. If $r < \omega$ (the albedo) the event was a scattering (go to Step 6), else, it was an absorption (record the energy absorbed and go to Step1). (x₀:

Monte Carlo – Procedure

- Step 6: Determine the new direction (Θ , Φ), where Θ is the angle between the old and the new direction (to be determined from the Henyey-Greenstein phase function *) and Φ =2 π r.
- **Step 7**: Convert (Θ , Φ) into (θ , ϕ) and go to Step 3.

Continue the loop described above until the photon is either absorbed or escapes from the absorbing medium.

*
$$p(\hat{n}',\hat{n}) = \frac{1-g^2}{(1+g^2-2g\hat{n}'\cdot\hat{n})^{3/2}}$$

Henyey & Greenstein, 1941, ApJ, 93, 70

Scattered intensities - The method

 $|=|_0+|_1+|_2+...$

$$I = I_0 + I_1 + I_2 + \dots$$

$$I_0 = \sum_{all \Delta s} \eta(s) \Delta s \ e^{-\tau(s)}$$
The method
$$I_1 = \omega \sum_{all \Delta s} \left[\kappa(s) \sum_{all \hat{n}} I_0(\hat{n}') p(\hat{n}', \hat{n}) (\Delta \Omega / 4\pi) \Delta s \right] e^{-\tau(s)}$$

$$p(\hat{n}', \hat{n}) = \frac{1 - g^2}{(1 + g^2 - 2g\hat{n}' \cdot \hat{n})^{3/2}}$$
Henyey & Greenstein, 1941, ApJ, 93, 70
$$\omega_V \approx 0.6$$

$$g_V \approx 0.5$$

Weingartner & Draine, 2001, ApJ, **548**, 296

Scattered Intensities - Approximation

$$I = I_0 + I_1 + I_2 + \dots = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_2}{I_1} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \left(\frac{I_1}{I_0} \right)^2 + \dots \right) = I_0 \left(\frac{I_1}{I_0 - I_1 + I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} \frac{I_1}{I_0} \frac{I_1}{I_0} \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac$$

Verification

1. The scattering is essentially forward

$$p(\hat{n}',\hat{n}) = \frac{1-g^2}{(1+g^2-2g\hat{n}'\cdot\hat{n})^{3/2}}$$

Henyey & Greenstein, 1941, ApJ, **93**, 70

FIG. 3.—Polar diagram of the phase function of equation (2), for $\gamma = 1$. The more elongated curve is for $g = +\frac{2}{3}$; the other, for $g = +\frac{1}{3}$. The radiation is incident on the particle from the left, as shown by the arrow.

Approximation

$$I = I_0 + I_1 + I_2 + \dots = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_2}{I_1} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \left(\frac{I_1}{I_0} \right)^2 + \dots \right) = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_2}{I_1} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \left(\frac{I_1}{I_0} \right)^2 + \dots \right) = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_2}{I_1} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \left(\frac{I_1}{I_0} \right)^2 + \dots \right) = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_2}{I_1} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2}{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2}{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2}{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2}{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2}{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2}{n \ge 2}{n \ge 2} I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_1}{I_0} + \dots \right) \xrightarrow[n \ge 2]{n \ge 2}{n \ge 2}{$$

Kylafis & Bahcall, 1987, ApJ, **317**, 637

Verification

 $I^{0} \left(I - I_{1} / I_{0} \right)$

$\begin{array}{l} \textbf{Approximation} \\ I = I_0 + I_1 + I_2 + \dots = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_2}{I_1} + \dots \right) \\ \hline \textbf{n \ge 2} \end{array} I_0 \left(1 + \frac{I_1}{I_0} + \left(\frac{I_1}{I_0} \right)^2 + \dots \right) = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_2}{I_1} + \dots \right) \\ \hline \textbf{n \ge 2} \end{array} I_0 \left(1 + \frac{I_1}{I_0} + \left(\frac{I_1}{I_0} \right)^2 + \dots \right) = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_2}{I_1} + \dots \right) \\ \hline \textbf{n \ge 2} = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} \frac{I_2}{I_1} + \dots \right) \\ \hline \textbf{n \ge 2} = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ \hline \textbf{n \ge 2} = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ \hline \textbf{n \ge 2} \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_2}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \dots \right) \\ = I_0 \left(1 + \frac{I_1}{I_0} + \dots \right) \\ = I_$

Kylafis & Bahcall, 1987, ApJ, 317, 637

Verification

2. Computation of the I_2 term

$$\tau^{e}(V) = 100$$

$$\theta = 90^{\circ}$$

$$h_{s} = 3kpc$$

$$h_{d} = 3kpc$$

$$z_{s} = 0.3kpc$$

$$z_{d} = 0.15kpc$$

Model application in spiral galaxies

Xilouris et al, 1999, A&A, 344, 868

Code Comparison in galactic environments

Models with different inclination angle

Modeling the SED of NGC 1068

