The IR/X-ray connection: results from the SWIRE Legacy Survey

Michael Rowan-Robinson Imperial College London

Unified models for AGN: first ideas

first attempt at 'unified model' for quasars, Seyferts, radio-galaxies: Rowan-Robinson 1976 - Type 2 are obscured Type 1, link to 10 μ m emission ?

developed into unified model (Antonucci 1993, Krolik 1999) in which different AGN types are a function of the viewing angle

Miley et al 1984: IRAS detection of mid-ir excess from AGN

R-R & Crawford 1989: first model of this excess as dust torus around AGN

today: X-ray AGN classified as: unobscured (lg N(H)<22), Compton thin (lg N(H) = 22-24), or Compton thick (lg N(H)>24)

- these should all be detectable as dust tori in the mid-ir

Open question; could there be a major population of heavily obscured AGN, not detected at 1-10 keV in X-rays (could help explain hard-X background)

Imperial College

London

Sept 24th 2008

combining surveys by Chandra and Spitzer

Sept 24th 2008

Athens, NOA AGN workshop

Imperial College London

SWIRE (Spitzer Wide-Area IR Extragalactic Survey)

- **SWIRE**: 49 sq deg in ELAIS-N1,-N2,-S1, Lockman, XMM-LSS, CDFS areas surveyed at 3.6,4.5,5.8,8.0,24,70 and 160 μ m
 - Reliable catalogues released in N1, N2, XMM, Lockman, S1 (Dec 05)
 - Final catalogues will be released shortly, including photometric redshifts

Outline

- Photometric redshifts, redshift distribution
- Optical and infrared sed modelling
- Using X-ray data to study highly obscured quasars, proportion of Type 1/Type 2 quasars

SWIRE Team and Associates

Carol Lonsdale Harding E (Gene) Sm Michael Rowan-Robi	PI ith Deputy PI nson Deputy PI for So	IPAC, Caltech UCSD cience Imperial Colleg	Duncan Farrah, Maria Polletta Brian Siana ge Tom Babbedge, Dave Clements
Dave Shupe	Liaison Scientist	SSC/IPAC	
Jason Surace	Data Processing/IRA	C SSC/IPAC	
Kevin (Cong) Xu	Models	IPAC	
Deborah Padgett	Galactic Science/MIP	S SSC/IPAC	
Fan Fang	Simulation/Models	SSC/IPAC	
Alberto Franceschini	Spheroids/AGN	Padua	Stefano Berta, Giulia Rodighiero
Dave Frayer	EROs/MIPS	SSC/IPAC	
Glenn Morrison	Radio	IPAC	
JoAnn O'Linger	Galactic Science	SSC	
Seb Oliver Frazer Owen	Large Scale Structure Radio Deep Survey	e Sussex NRAO	Malcolm Salaman, Ian Waddington
Ismael Perez-Fourno	n Nearby Galaxies	IAC, Tenerife	Alejandro Afonso-Luis, Evanthia Hadtziminaoglou, Antonio Hernan-Caballero
Marguerite Pierre Gordon Stacey Steve Serjeant Eduardo Gonzalez-So	X-ray/XMM-LSS Submm ELAIS plares ELAIS	CEA, Saclay Cornell OU Cambridge	

Sept 24th 2008

Imperial College London

Photometric redshifts

SWIRE-VVDS sample (with VVDS team, PI LeFevre)

VIRMOS-VLT Deep Survey spectra >1000 sources ~3% *rms* in (1+z) <2% outliers

phot z method of RR 03, Babbedge et al 04, RR et al 05, some refinements

~ IRAC 3.6 and 4.5 μm big help in reducing outliers

> Imperial College London

Photometric redshifts

Sept 24th 2008

Athens, NOA AGN workshop

Redshift distributions

Sept 24th 2008

Athens, NOA AGN workshop

London

some statistics

- over 1.5 million galaxies in SWIRE survey
- 10% have z > 2, 4% have z > 3
- 20% detected at 24 μm , 1% at 70 or 160 μm
- 35% of 24 μm sources are dust torus dominated at 8 μm (9% of these are QSO1, most of rest Seyfert)
- 5% of 24 μ m sources are hyperluminous (Lir > 10¹³)
- do find some reddened QSOs, but only 5% of QSO1 have $A_v > 0.5$

Spectral energy distributions (SEDs) of a deep Lockman X-ray sample (Polletta et al 2006)

X-ray detected Compton-thick AGN

Selection criterion: HR, z ⇒ N_H≥10²⁴ cm⁻² 5 sources (z=1.4-2.5) SEDs:

•2 AGN (40%)

•3 normal galaxies (60%)

The most luminous Compton-thick quasar, z=254

- $F(0.3-8 \text{ keV}) = 2.7 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1}$
- HR = 0.85 N_H= $2x10^{24}$ cm⁻² & L_x= $1.2x10^{46}$ erg s⁻¹
- L_{bol} = 4x10⁴⁷ erg s⁻¹ & M_{BH} = 3x10⁹ M_
- Optical: blue with narrow lines (z=2.54) scattered light (0.6%)
- IR: red (r'-K = 4.2) model as QSO with A_v =4

0.12

Rest-frame wavelength (μ m) 0.14 0.16 0.18

0.20

0.70

Ltor/Lopt v. Ltor for SWIRE AGN dust tori

red: M82 sb dominated at 8 μm blue: AGN dust torus dominated

Ltor/Lopt v. Lor

use volume limited sample of tori to quantify covering factor f=L(tor)/L(opt-uv). Find <lg10 f> = -0.4, σ =0.26, l.e. f = 0.4.

SWIRE+X-rays

CLASX Chandra X-ray survey in Lockman (Yang et al 2004), 0.4 sq deg, 426 extragalactic X-ray sources, 322 detected by SWIRE, 162 of which are QSOs or have dust tori

a further 273 SWIRE sources are QSOs or have dust tori (total SWIRE population in CLASX area: 8563)

London

24 μ m v. X-ray flux

Wide range of ratio of 24 µm flux to X-ray flux (0.004-1.0 mJy/10₋₁₅ erg/cm²/s) (Rowan-Robinson, Valtchanov, Nandra, 2008, in prep.)

green triangle: broad line blue square: narrow line red square:galaxy spectr. magenta square: no spec z black circle: optical QSO crosses: upper limits

filled circles- ir template type red: M82 starburst blue: AGN dust torus green: Arp 2200 starburst

London

L(opt) v. L(Xh)

For type 1 QSOs, deduce X-ray bolometric correction is 23.5

green triangle: broad line blue square: narrow line red square:galaxy spectr. magenta square: no spec z black circle: optical QSO crosses: upper limits

filled circles- ir template type red: M82 starburst blue: AGN dust torus green: Arp 2200 starburst

Hydrogen column-density v. X-ray luminosity

Iuminosity in dust torus versus X-ray Iuminosity

lines correspond to covering factor f = 0.01, 0.1, 1, 10 (can't have > 1! So either X-ray bolometric correction underestimated, or there has been additional absorption in X-rays)

Imperial College London

L(tor)/L(opt) v. L(opt)

green triangle: broad line blue square: narrow line red square:galaxy spectr. magenta square: no spec z black circle: optical QSO crosses: upper limits

filled circles- ir template type red: M82 starburst blue: AGN dust torus green: Arp 2200 starburst

Ig {L(tor)/L(opt)} ~ Ig f, versus Ig L(opt), (L_{sun}) for all SWIRE AGN.

we see many low-luminosity tori with SWIRE which are not detected at X-rays

L(tor) v. z

blue square: narrow line red square:galaxy spectr. black circle: optical QSO

filled circles- ir template type red: M82 starburst blue: AGN dust torus green: Arp 2200 starburst

lg {L(tor)} versus z for all SWIRE AGN.

wider dynamic range than the X-ray luminosity, more low-luminosity, low-z, dust tori

London

Sept 24th 2008

very strong (Compton thick ?) tori

very weak tori ?

starburst-AGN connection

Left: L(sb) (measures star-formation rate) v. L(Xh,c)

[broken line - locus for X-ray starbursts].

Right: L(tor) v L(sb) - RR(2000), hyperluminous gals.

(1) Strong correlation - link between AGN and star formation

(2) these are differential versions of the Magorrian diagram (M_{bh} - M_{*})

London

SUMMARY

• phot z

- good accuracy and reliability with 4 or more photometric bands
- a few red quasars with $A_V \sim 0.5$ -1 (need SMC dust)
- ir template fits
 - validated by IRS
 - 35% of 24 μm sources are dust torus dominated at 8 μm (9% of these are QSO1, most of rest Seyfert: for Lir>10¹¹ Lo, 60% are type 1, 40% are Type 2)
- Compton thick X-ray QSOs (NH>10²⁴)
 - some are Type 1, so broad/narrow lines not indicator of dust column
 - Polletta et al (2006) found 5 in 0.6 sq deg, estimated 55 per sq deg
 - 16 found in CLASXS from S(Xh)/S(Xs), 18 candidates with L(tor) > L(XH,c), most may just be lower luminosity Type 2 objects (fraction of z>2.3 AGN: 20-40%)
- Covering factor
 - from analysis of SWIRE QSOs (Type 1) with dust tori, f =0.4
 - consistent figure from CLASX X-ray sample, f = 0.32
 - no sign of dependence of covering factor on X-ray luminosity

