The Impact of AGN on Mpc scales

X-RAY

Antonis Georgakakis National Observatory of Athens

Outline

- Galaxy groups and clusters
 - Hot Inter-Galactic Medium (IGM)
- Problems in our understanding of the IGM
 - Departure from self-similarity
 - Overcooling in cooling flow clusters
- Problems can be resolved if AGN inject energy into IGM
- Observations of AGN/IGM interplay
- Simulations of AGN/IGM interplay
- Cosmological significance

Galaxy groups and clusters

Most massive structures in the Universe

- − Total mass 10¹³−10¹⁵M_☉
- Only ~14% of mass in baryons
- Stars are a tiny fraction of the baryonic mass, ~1-2%
- Most baryons in the form of hot X-ray emitting gas with temperatures 10⁷-10⁸keV

Galaxy groups and clusters

Most massive structures in the Universe

- − Total mass 10¹³−10¹⁵M_☉
- Only ~14% of mass in baryons
- Stars are a tiny fraction of the baryonic mass, ~1-2%
- Most baryons in the form of hot X-ray emitting gas with temperatures 10⁷-10⁸keV

Hot Intra-Cluster Medium

- Baryons trapped into cluster/group potential well.
- Gas heated mainly because of gravity (10⁷-10⁸K)
- X-ray emission: Bremmstrahlung radiation

Virial Theorem:

$$U_{kin} = -\frac{1}{2}\Omega_{pot} \Longrightarrow \frac{1}{2}m_p v^2 = \frac{1}{2}\frac{GMm_p}{R}$$

Assume ideal monoatomic gas (hydrogen)

$$\frac{1}{2}m_p v^2 = \frac{3}{2}kT \Longrightarrow T \sim \frac{GMm_p}{kR}$$

For cluster with $M = 10^{14} M_{solar}$ and R = 100kpc $T \sim 5 \times 10^7 K$

Self-similar scaling relations

Basic Assumptions:

1. Clusters form via gravitational collapse.

2. The only source of energy is gravitational energy.

Clusters are self-similar: Their properties scale up or down depending on their Mass.

Derive simple scaling relations between cluster observables to test the assumptions above

Hot gas: Bremsstrahlung

- Gas temperature T~10⁷-10⁸K: Hydrogen fully ionised
- Bremsstrahlung or braking radiation: emitted by a charged particle when accelerating in electric field.
- In the case of X-rays, e⁻ in Coulomb collision charge of Z protons
- The resulting spectrum is **flat** with an **upper cutoff** ω_{cut} , related to the interaction time, $\Delta t = v/b$, or interaction frequency $\omega = 1/\Delta t = b/v$

$$I = \frac{8Z^2 e^6}{3\pi c^3 m_e^2 v^2 b^2} ,$$

where v electron velocity,

b the impact paramater.

Hot gas: thermal Bremsstrahlung

In astrophysically interesting • cases, electrons have velocity distribution.

$$f(v) = 4\pi \left(\frac{m_e}{2\pi kT}\right)^{3/2} v^2 e^{-\frac{m_e v^2}{2kT}}$$

In the case of plasma with uniform emitted power per unit volume and unit frequency: • temperature *T*, Maxwell distribution

ſ

- Thermal Bremsstrahlung falls off exponentially at high energies
- X-ray luminosity proportional to • gas mass, gas density and $T^{1/2}$

$$e_{ff} = g_{ff} \frac{2^5 \pi e^6}{2m_e c^3} \left(\frac{2\pi}{3m_e k}\right)^{1/2} Z^2 n_e n_i T^{-1/2} e^{-hv/kT}$$

integrating in frequency:

$$e^{ff} = 1.4 \times 10^{-27} g_B Z^2 n_e n_i T^{1/2}$$
 in erg s⁻¹ cm⁻³

$$L_X = \int e^{ff} dV \propto M_{gas} \rho_{gas} T^{0.5}$$

Self-similar scaling relations

Virial Theorem:

Dark Matter Halo:

Mass *M*, Density ρ

Cluster Gas:

Mass M_{gas} , Density: ρ_{gas} , Temperature T

$$U_{kin} = -\frac{1}{2}\Omega_{pot} \Rightarrow \frac{3}{2}kT = \frac{1}{2}\frac{GMm_p}{r} \Rightarrow$$
$$T \sim Mr^{-1} \xrightarrow{\rho \sim M/r^3} T \sim M^{2/3}\rho^{1/3}$$

Also assume

$$\rho_{gas} \sim \rho$$
$$M_{gas} \sim M$$

Using the above derive scaling relation for L_X :

$$L_X \propto M_{gas} \rho_{gas} T^{0.5} \Rightarrow L_X \propto \rho^{0.5} T^2$$

Self-similar scaling relations

How is ρ defined?

We have to decide radius within which ρ is measured.

Choose radius at which the local density is a fixed multiple of the critical density of the Universe.

$$\rho = \Delta \times \rho_c \Longrightarrow \rho = \Delta \times \frac{3H(z)^2}{8\pi G}$$

For smaller clusters $\rho = \Delta \times \rho_c$ will correspond to smaller radii.

Scaling relation for L_X :

$$\begin{split} L_X &\propto \rho^{0.5} T^2 \Rightarrow L_X \propto \Delta^{0.5} \rho_c^{0.5} T^2 \Rightarrow \\ L_X &\propto T^2 \rho_c^{0.5}(z) \\ \rho_c(z) &= \frac{3H(z)^2}{8\pi G}, \ H(z)^2 = H_o^2 \Big(\Omega_M (1+z)^3 + \Omega_\Lambda \Big) \end{split}$$

After accounting for redshift and mass of different clusters we expect :

$$L_X \propto T^2$$

Departure from self-similar scaling relations

Observed L_X -*T* relation deviates from self-similarity.

Departure from self-similarity is more pronounced for less massive clusters/groups

Evidence for non-gravitational source of heating that raises T at a given L_X .

Additional heating needed ~1keV per particle.

Cluster gas cooling time: overcooling problem

Hot gas cools via thermal Bremsstrahlung radiation.

At the cluster outskirts typical values $n_p \sim 10^{-4} \text{ cm}^{-3}$, $T \sim 10^7 \text{ K}$: $t_{cool} \sim 10^{11} \text{ yr} >> \text{ Age of the Universe}$

BUT: at cluster core typical values $n_p \sim 10^{-2} \text{ cm}^{-3}$, $T \sim 10^7 \text{ K}$: $t_{cool} \sim 2 \times 10^9 \text{ yr}$, i.e. fast cooling

Thermal Bremsstrahlung emissivity

 $e^{ff} = 1.4 \times 10^{-27} g_B Z^2 n_e n_i T^{1/2}$ in erg s⁻¹ cm⁻³ For a perfect monoatomic gas at temperature T

$$U = \frac{3}{2}kTn_e$$

So the time required to radiate this energy:

$$t_{cool} = \frac{3}{2} kT n_e / e^{ff} \Rightarrow$$

$$t_{cool} = 8.5 \times 10^{10} \left(\frac{n_p}{10^{-3} cm^3}\right)^{-1} \left(\frac{T}{10^8 K}\right)^{1/2} yr$$

Overcooling problem

There should be a reservoir of cool gas & star-formation in the central cluster galaxy.

- * Not all cooling flow clusters show evidence for SF.
- * In many clusters SF rate << than cooling mass rate
- * Cold gas is 10 times less than expected

some heating process suppress cooling

Heating history of clusters

- ICM properties suggest additional nongravitational heating mechanism:
 - Departure from self-similarity (e.g. L_X –*T* relation)
 - Lack of cooling gas at the centre of clusters
- Could AGN provide the extra energy?

Evidence for AGN/ICM interaction

Cavities in the hot cluster gas created by radio jets coming from the super-massive black hole of the central cluster galaxy.

Evidence for AGN/ICM interaction

Evidence for AGN/ICM interaction

Energetics of AGN/ICM interaction

Is the energy injected by jets sufficient to (i) stop cooling flows and (ii) pre-heat the gas? Heat (Q) injected to ISM is the sum of internal energy (U) plus work (PV) done by jets on ISM : $Q = U + pdV \sim U + PV$ Assuming idea gas : U = 3/2NkT = 3/2PVCombining the relations above Q = 5/2PV

Application to Hydra cluster : bubble heating : $Q = 10^{60} erg$ AGN lifetime 10^8 yr, so heating rate : $\overset{\bullet}{Q} = 3 \times 10^{44} erg/s$

Energetics of AGN/ICM interaction

Is the energy injected by jets sufficient to (i) stop cooling flows and (ii) preheat the gas?

YES: In the Hydra cluster, cooling luminosity equals the bubble heating luminosity. Cooling rate of ISM: $Q = U + pdV \sim U + PV$ Assuming idea gas : U = 3/2NkTCombining the relations above

$$Q = 5/2NkT = \frac{5}{2}\frac{M}{\mu m_p}kT$$

Cooling luminosity:

$$L_{X} = \frac{5}{2} \frac{M}{\mu m_{p}} kT$$

Application to Hydra, M = 100Msolar/yr $L_X = 3 \times 10^{44} \text{ erg/s}$

Energetics of AGN/ICM interaction

Is the energy injected by jets sufficient to (i) stop cooling flows and (ii) preheat the gas?

ALMOST: In the Hydra cluster, the energy needed to explain $L_X - T$ relation offset is ×2 larger than the bubble heating luminosity

An increase in the ISM energy per particle of \sim 1keV is required to explain offset in the L_x - T relation :

 $\Delta E_{particle} \sim 1 \mathrm{keV}$

For a cluster with gas mass M_{gas}

$$\Delta U = N \times \Delta E_{particle} = \frac{M_{gas}}{\mu m_p} \Delta E_{particle},$$

where N is the number of the ISM particles.

For the Hydra cluster, $M \sim 6 \times 10^{13} M_{solar}$, $\Delta U = 2 \times 10^{62} \text{ erg}$ Assuming that this is deposited to the ISM by AGN over the lifetime of the Universe ~ 10Gyr, the energy injection rate is $\Delta U/\Delta t = 7 \times 10^{44} \text{ erg/s}$

Problems and ongoing research

- Is jet energy deposited at the right place to offset cooling flows?
- How is jet energy dissipated in the ICM?
- How frequent are AGN outbursts in clusters?
- How radio jets form?
- How is accretion on the SBH of cluster galaxies triggered?
- Are jets the only way of heating ICM?

Jet/ICM interaction simulations

Heinz et al. 2006

Departure from self-similar scaling relations

Observed L_X -*T* relation deviates from self-similarity.

Departure from self-similarity is more pronounced for less massive clusters/groups

Evidence for non-gravitational source of heating that raises T at a given L_X .

Additional heating needed ~1keV per particle.

Cosmological simulations of galaxy formation

Cold Dark Matter

- Λ–cosmology
- Evolution of dark matter haloes
- Gravity only

Implications for cosmological simulations for galaxy formation

Cosmological simulations: too many massive blue (star-forming) galaxies at z~1

Need to suppress star-formation in massive galaxies at z~1: AGN feedback via radio jets can solve the problem

Summary

- AGN have a strong impact on the large scale environment of galaxies
- Radio Jet/ICM interaction can explain
 - The departure of clusters/groups from selfsimilarity
 - The lack of cool gas in cooling flow clusters
- AGN feedback important for cosmological simulations for galaxy formation

References for further study

- McNamara & Nulsen ARA&A, 2007, 45, 117 (arXiv:0709.2152)
- Fabian A. C., 1994, ARA&A, 32, 277
- "Cosmological Aspects of X-ray Clusters of Galaxies", 1994, NATO ASI series, edited by W. C. Seiter
- "Heating versus Cooling in Galaxies and Clusters of Galaxies", proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference, Garching 2006, editors Boringer, Pratt, Finoguenov, Schuecker.

Self-similar scaling relations

Entropy of estimates the heating history of the gas:

$$S \sim \ln(\frac{T^{3/2}}{\rho_{gas}})$$

Assumes ideal monoatomic gas.

Evidence for non-gravitational source of heating that raises entropy of the gas

